This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Pace, Andrea , Buscemi, Silvestre and Vivona, Nicolò(2007) 'THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS. PART 2. FIVE-MEMBERED RINGS WITH TWO HETEROATOMS. A REVIEW', Organic Preparations and Procedures International, 39: 1, 1 - 70To link to this Article: DOI: 10.1080/00304940709458581

URL: http://dx.doi.org/10.1080/00304940709458581

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS. PART 2. FIVE-MEMBERED RINGS WITH TWO HETEROATOMS. A REVIEW

Andrea Pace, Silvestre Buscemi, and Nicolò Vivona*

Dipartimento di Chimica Organica "E. Paternò", Università degli Studi di Palermo, Viale delle Scienze-Parco d'Orleans II, I-90128 Palermo, ITALY e-mail: nvivona@unipa.it

INTRODUCTION	3
I. PYRAZOLES	4
1. Ring-fluorinated Pyrazoles	4
2. Fluoroakylated Pyrazoles	8
a) Syntheses from β-Dicarbonyl Compounds	9
b) Syntheses from $\alpha_{\mu}\beta$ -Unsaturated Carbonyl Compounds	14
c) Syntheses from Polyfluoroalkylcarbonyl Compounds	18
d) Syntheses from Cycloaddition Reactions	20
II. IMIDAZOLES	22
1. Ring-fluorinated Imidazoles	22
2. Fluoroalkylated Imidazoles	24
a) Side-chain Fluorinated Imidazoles	24
b) Perfluoroalkylation Reactions	26
c) Syntheses from Heterocyclization Reactions	
III. ISOXAZOLES	
1. Ring-fluorinated Isoxazoles	
2. Fluoroalkylated Isoxazoles	32
a) Syntheses from β-Dicarbonyl Compounds	32
b) Syntheses from α , β -Unsaturated Carbonyl Compounds	34
c) Syntheses from Polyfluoroalkylcarbonyl Compounds	37
d) Syntheses from Cycloaddition Reactions	
e) Miscellaneous	40
IV. ISOTHIAZOLES	41

^{© 2007} by Organic Preparations and Procedures Inc.

V. OXAZOLES	42
1. Ring-fluorinated Oxazoles	42
2. Fluoroalkylated Oxazoles	44
VI. THIAZOLES	48
1. Ring-fluorinated Thiazoles	48
2. Fluoroalkylated Thiazoles	50
VII. CONCLUDING REMARKS	54
REFERENCES	54

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS. PART 2. FIVE-MEMBERED RINGS WITH TWO HETEROATOMS. A REVIEW

Andrea Pace, Silvestre Buscemi, and Nicolò Vivona*

Dipartimento di Chimica Organica "E. Paternò", Università degli Studi di Palermo, Viale delle Scienze-Parco d'Orleans II, 1-90128 Palermo, ITALY e-mail: nvivona@unipa.it

INTRODUCTION

Fluorinated heterocycles represent an important class of compounds, largely applied as agrochemicals, pharmaceuticals, fluoropolymers, fluorous catalysts and in new materials sciences.¹ Much effort has been devoted to developing efficient synthetic methodologies to target fluorinated compounds. Several reviews in the literature have been dedicated to this aspect of fluorinated heterocycles² and we refer to them for general information.

Our project of reviewing the synthesis of fluorinated heterocycles focused on aromatic five-membered heterocycles containing two or more heteroatoms. However, instead of considering *general methodologies* to obtain fluorinated targets, our approach has been devoted to addressing the most recent procedures for the *syntheses of each kind of fluorofunctionalized heterocycle*. The first part of our project, published in this series in 2005, discussed fluorinated five-membered heterocycles with more than two heteroatoms (oxadiazoles, thiadiazoles, triazoles, and tetrazoles) and contained general considerations and 200 citations to specific literature on this topic.³ This second part is dedicated to the synthetic methodologies for fluorinated five-membered heterocycles with two heteroatoms, namely pyrazoles, imidazoles, isoxazoles, isothiazoles. From a structural point of view, it is important to remember that in the case of *1H*-pyrazoles, C(3) and C(5) substituted derivatives are tautomeric forms. The same applies to C(4) and C(5) substituted derivatives of *1H*-imidazoles.

For five-membered heterocycles with two or more heteroatoms, the significant review by Elguero *et al.* (which appeared in this series in 1995)⁴ discussed the synthesis, the reactivity, and some spectroscopic features of trifluoromethyl and perfluoroalkyl derivatives. Following our previous approach, our purpose is to present for each heterocycle an updated picture of the methodologies used to obtain both fluoroalkylated and ring-fluorinated targets.

Only monocyclic aromatic substrates have been considered; dihydro or tetrahydro compounds will be discussed only when involved in syntheses of general interest. Each section

will initially discuss the synthesis of ring-fluorinated heterocycles (even when fluoroalkyl groups are present), followed by the methodologies for poly- or perfluoroalkyl systems. Experimental details, when available, will be cited only if of interest to clarify the involved processes. Particular attention was paid to the literature from the last two decades to the end of 2005. Previous papers will be cited only when of general interest or to clarify the synthetic approach.

I. PYRAZOLES⁵

1. Ring-fluorinated Pyrazoles

Several ring-fluorinated pyrazoles are known. MNDO⁶ and *ab initio*⁷ calculations have also been reported for a series of mono- and polyfluorinated compounds. Some ring-fluorinated pyrazoles have been synthesized following the *direct fluorination approach*. For example, the fluorination of **1** using the hydrogen fluoride-pyridine-triethylamine complex under electrolytic anodic oxidation, produced derivatives **2** and **3** (*Scheme 1*).⁸ Other examples are fluorination of **4** (with F_2 in acetic acid) to obtain **5** (75%),⁹ and the fluorination of 1-phenyl-2,3-dimethylpyrazolin-5-one (antipirine) (with F_2 in acetic acid or aqueous media) which essentially leads to the 4-fluoro derivative.¹⁰ Fluorination of the lithium salt of the 3-cyanopyrazole **6** with the *N*-fluorobenzenesulfonimide produces the 4-fluoro compound **7**.¹¹

The introduction of a fluorine atom on the pyrazole ring has also been achieved by conventional methodology that consists of the photochemical decomposition of diazonium tetra-fluoroborates in HBF₄. Even though yields are not always satisfactory, this method has been used to obtain: *i*) compounds **8** (R = H), **9**, and **10**;¹² *ii*) 3-fluoro-1-methyl-**8** (R = Me) and 4-fluoro-1-methylpyrazole **11** (R = Me);¹³ *iii*) 5-fluoro-3,4-dimethylpyrazole **12**;¹⁴ *iv*) 3,4- and 3,5-difluoropyrazoles **13** and **14** (*Fig. 1*).¹⁵

Additionally, ring-fluorinated pyrazoles can be prepared by typical heterocyclization reactions used in pyrazole syntheses. In this manner, pyrazoles containing both the fluorine and the fluoroalkyl groups have also been obtained. For example, 4-fluoropyrazoles **16** are formed

(72-85%) from 2-fluoro-1,3-diketones **15** (prepared by fluorination of the corresponding silyl enol ether with F_2/N_2) and phenylhydrazine.¹⁶ Additional examples of this approach are the synthesis of **19** and **21** (*Scheme 2*).¹⁷ Similarly, 4-fluoropyrazoles **11** (R = H, *p*-NO₂C₆H₄)) have been synthesized from fluoromalonic dialdehyde **22** (or its *bis*-dimethylacetal) and hydrazines;¹⁸ moreover, compounds **11** (R = H, Me) were obtained in 57 and 90% yields, respectively, from β -fluorovinamidinium (1,5-diazapentadienium) salt **23** and hydrazine or methylhydrazine in MeCN.¹⁹

Other examples describing the synthesis of 4-fluoropyrazoles involve: *i*) the reaction of (Z)-2,3,3-trifluoro-1-propenyl-*p*-toluenesulfonates **24** and methylhydrazine in the presence of tetrabutylammonium fluoride leading to **25** (71-88%);²⁰ *ii*) the reaction of 3-substituted-*trans*-2,3-difluoro-2-acrylates **26** with hydrazine in the presence of bases affording 3(5)-hydroxy-4-fluoropyrazoles **27** (76-80%);²¹ *iii*) the acid-induced ring-closure of the (Z)-acylhydrazine **28** into the 4-fluoro-1-phenylpyrazolin-3-one **29** (72%) (Scheme 3).²²

In turn, 5-fluoropyrazoles 32 are prepared in excellent yields from 2,2-difluorovinylketones 31 with substituted hydrazines.²³ In the case of aliphatic hydrazines, the reaction is performed in aqueous ethanol under neutral conditions. In the case of aromatic hydrazines, the reaction is performed in THF in the presence of butyllithium (which enhances the nucleophilic character of the aryl substituted nitrogen of the reagent). Similarly, the reaction of representative 31 ($R^1 = n$ -Bu; $R^2 = Ph$) with hydrazine monohydrate in the presence of trifluoroacetic acid produces the *1H*-3(5)-fluoropyrazole 30.²³ 5-Fluoropyrazolin-3-ones 35 (X-ray data available for

35; Ar = Ph; R = Me) are similarly obtained (80-90%) by reacting 2-trifluoromethyl-2-arylacetates **33** with an excess of hydrazines.²⁴ The complete regioselectivity has been rationalized assuming a nucleophilic attack of the more nucleophilic nitrogen of the hydrazine, bearing the methyl (or benzyl) group, on the fluorinated vinyl carbon of the proposed intermediate **34** (*Scheme 4*). Accordingly, when the lithium salt of phenylhydrazine was used, the 5-fluoro compounds **35** (R = Ph) were formed (76-90%).²⁴

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

Perfluorinated 2-pentene **36** represents a very useful synthon for the synthesis of pyrazoles bearing both a fluorine and a perfluoroalkyl group linked to the ring. The reaction of **36** with arylhydrazines in acetonitrile and in the presence of triethylamine (TEA) produced a mixture of 5-fluoropyrazoles **38** and 3-fluoropyrazoles **39** in various ratios depending on the reaction conditions (*Scheme 5*).²⁵ The formation of the 5-fluoro isomer **38** was rationalized through the intermediate **37**. For the formation of the 3-fluoro isomer, instead, the suggested initial base-catalyzed isomerization of **36** into the corresponding 1-pentene appears unlikely.²⁵ Other examples of ring-fluorinated pyrazoles prepared from the same substrate are reported.²⁶

4-Fluoro-5-perfluoroalkylpyrazoles **42** have been reported (and their structure confirmed by NMR spectroscopy) by heterocyclization of perfluoroenones **41** (or their synthetic equivalents **40** and **44**) with methylhydrazine.²⁷ Only one regioisomer is formed, arising from a Michael-type attack of the more nucleophilic methylated nitrogen onto the perfluoroalkylated β -carbon of the enone.²⁷ [In a previous paper regarding the reaction of the (trimethylsilyl)perfluoroalkanol **40** (R = Ph; R_F = C₄F₉) with methylhydrazine, the formation of the corresponding 4-fluoro-3-perfluoroalkyl regioisomer had been claimed erroneously].²⁸ Enones **41** can be generated from 1-(trialkylsilyl)perfluoroalkanols precursors **40**^{27,28} which, in turn are easily prepared from acylsilanes and perfluoroalkyl iodides **43** (*Scheme 6*). On this basis, one-pot procedures starting from acylsilanes are also possible and have been used to obtain fluorinated pyrazole rings linked to a carbohydrate moiety such as **46**.²⁷

In the context of the above reaction, we note that 4-fluoro-3-perfluoroalkyl-pyrazoles **49** (80-90%) had previously been claimed (without any information to support the questionable regiochemistry) from the reaction of fluorinated enol phosphates **48** (structurally related to silylenol ethers **44**) with methylhydrazine (*Scheme 7*).²⁹

Finally, cycloaddition reactions are also reported for the synthesis of ring-fluorinated pyrazoles. As an example, a mixture of 4-fluoro- and 3-fluoropyrazole (**51**, **52**) regioisomers (in 42 and 21% yields, respectively) is formed in the cycloaddition reaction of the *N*-phenylsydnone **50** (R = Ph) onto perfluoropropyne (*Scheme 8*).³⁰

2. Fluoroalkylated Pyrazoles

Polyfluoroalkyl or perfluoroalkyl pyrazoles generally arise from fluorinated open-chain precursors through common heterocyclization reactions leading to the pyrazole ring. These include cyclocondensation reactions of hydrazines with substrates such as β -dicarbonyls, α , β unsaturated carbonyls, polyfluoroalkylcarbonyls, and congeners, and cycloaddition reactions of nitrilimines (or diazo compounds) with dipolarophiles. Some examples of modification of a preexisting functional group in the pyrazole ring include: *i*) fluorination of a 3,5*bis*(trichloromethyl)pyrazole into the corresponding 3,5-*bis*(trifluoromethyl) derivative by using 1,3-dimethyl-2-imidazolidinone•HF complex as a fluorinating reagent;³¹ and *ii*) transformation of a carboxy group into a trifluoromethyl group by using SF₄/HF fluorinating reagent.³² The syntheses of *N*-difluoromethylpyrazole **53** and *N*-trifluoromethylpyrazole **56** have also been reported (*Scheme 9*).³³

a) Syntheses from β -Dicarbonyl Compounds

The cyclocondensation reaction between β -dicarbonyl compounds and hydrazines is the main synthetic approach to pyrazoles.⁵ The generally accepted mechanism for this reaction consists of an initial nucleophilic attack by the hydrazine on the more electrophilic site of the dicarbonyl. In the case of asymmetric reagents, the regiochemistry of such an attack will depend on the keto-enol equilibria of the dicarbonyl compound. 3,5-Dihydroxypyrazolidine **58** and **59** and 5-hydroxypyrazolines **61** and **62** have been suggested as the key intermediates (*Scheme 10*).^{34,35} In the case of fluorinated compounds, a dihydroxypyrazolidine **58** (R¹ = R² = CF₃; R³ = H) and a 5-hydroxypyrazoline **61** (R¹ = CF₃; R² = Me; R³ = H) have been isolated and characterized.³⁶ Other examples of isolated 5-hydroxy-5-perfluoroalkylpyrazolines as intermediates in the synthesis of perfluoroalkylpyrazoles have been reported.³⁷ Additional references on this topic can be found in the course of this review.

A comprehensive overview has described reactions of fluorinated diketones (of general type CF_3COCH_2COR) with aryl- or hetarylhydrazines to yield a variety of trifluoromethylpyrazoles and 5-trifluoromethyl-5-hydroxypyrazolines **61** ($R^1 = CF_3$).³⁸ The observed results were rationalized with the support of semi-empirical calculations at the PM3 level, and this study proved that the regiochemistry of the reaction is kinetically controlled by the rate of dehydration of the two 3,5-dihydroxypyrazolidines **58** and **59**. In this context, it has also been assessed that the further dehydration of 5-hydroxy-5-trifluoromethylpyrazolines **61** ($R^1 = CF_3$) is inhibited by the presence of electron-withdrawing groups at the C(5) or N(1).^{4,35,38} The electron-withdrawing CF₃ group (or in general, perfluoroalkyl group) at C(5) would in fact destabilize any cationic

character in an E1-like mechanism. Inhibition of the dehydration process by decreasing the electron density at N(1) can be similarly rationalized,³⁹ and explains the differing results observed by using alkyl- or phenylhydrazines on one hand, and acylhydrazine, thiosemicarbazide, 2,4-dinitrophenylhydrazine or pentafluorophenylhydrazine, on the other. These considerations suggest care when comparing the regiochemistry of reactions performed in the presence of acids that catalyze the dehydration process.

Various papers report the synthesis of fluoroalkylated pyrazoles from fluorinated 1,3dicarbonylic compounds. A series of β -diketones that contain one or two perfluoroalkyl groups react with hydrazines (RNHNH₂; R = H, Me, Ph, CH₂CH₂CN) in refluxing methanol containing hydrochloric acid to produce the corresponding pyrazole derivatives in 80-90% yield. Reactions with substituted hydrazines preferentially or exclusively lead to the pyrazole derivative bearing the perfluoroalkyl group at C(3).40 However, in the reaction of perfluoroalkylmethyldiketones with phenylhydrazine, $5-R_F$ regioisomers are formed preferentially. Trifluoromethylpyrazoles are obtained from the reaction of a series of trifluoromethyl diketones 64 with arylhydrazines in $EtOH/H_2SO_4$. When small alkyl groups are present, significant amounts of both regioisomers 65 and 66 are obtained. On the other hand, when the diketone contains either bulky alkyl or aryl groups, the preferred regioisomer is the 3-trifluoromethylpyrazole 65.16b The exclusive formation of 3-trifluoromethyl-4-fluoropyrazoles 16 ($R^2 = CF_3$; $R^1 = Alkyl$, Ph) is reported for the reaction of trifluoromethylated 2-fluoro-1,3-diketones 15 ($R^2 = CF_3$; $R^1 = Alkyl$, Ph) and phenylhydrazine (Scheme 2). Since these 2-substituted 1,3-diketones exist esclusively in the diketo form, 4^{1} the observed regioselectivity was explained by the attack of the NH, end of the phenylhydrazine onto the more electrophilic carbonyl.¹⁶ Other examples of 3-fluoroalkylpyrazoles obtained from arylfluoroalkyl- β -diketones have recently been reported.¹⁷ The 3-trifluoromethyl-5-(2-furyl)pyrazoles 71 are obtained from the corresponding trifluoromethyl diketone 70 and arylhydrazines in acetic acid.⁴² The opposite regioselectivity was observed in the exclusive formation of the 5trifluoromethyl-5-hydroxypyrazolines 68 (59%) (easily dehydratable into 69) by selective protection of the CF₃CO moiety with pyrrolidine (Scheme 11).⁴³

Heteroarylhydrazines react with various trifluoromethyl- β -diketones **64** to form trifluoromethylated cyclic products.⁴⁴ 2-Hydrazinoquinoline produced either the 5-hydroxy-5-trifluoromethylpyrazolines **72** or a mixture of pyrazolines **72** (major component; ~ 60%) and 3-trifluoromethylpyrazoles **73** (~ 10%), depending on the R group of the diketone (*Scheme 12*).^{44a} In turn, hydroxypyrazolines **72** undergo dehydration into the corresponding 5-trifluoromethylpyrazoles by treatment with H₂SO₄ in acetic acid. The reaction of the trifluoromethyl- β -diketone **64** (R = Me) with 4-hydrazinoquinoline under standard conditions mainly yielded an isolable hydrazone at the COMe moiety. Subsequent dehydration by treatment with H₂SO₄ in acetic acid produced the corresponding 5-trifluoromethylpyrazole.^{44a} Similarly, cyclocondensation of 2-hydrazinothiazoles with some aryltrifluoromethyl- β -diketones **64** (R = Aryl) was claimed to yield the 5hydroxy-5-trifluoromethyldihydropyrazoles **74**, whose dehydration into pyrazoles required

Scheme 12

74

refluxing in acetic anhydride.^{44b} The regiochemistry of the reaction was determined from X-ray crystallography performed on a pyrazole derivative. Additional examples of reaction of aryl and heteroarylhydrazines with aryltrifluoromethyl- β -diketones **64** (R = Aryl), in neutral and acid conditions, have been reported very recently.⁴⁵

The preferred formation of 5-hydroxy-5-trifluoromethyldihydropyrazoles 75 (49-60%) with respect to the 3-trifluoromethylpyrazoles 76 (5-13%) is also reported in the reaction of some diketones 64 with penta(poly)fluorophenylhydrazines in EtOH. The dehydration of 75 can be

achieved with P_2O_5 in chloroform or with H_2SO_4 in acetic acid (*Scheme 13*).⁴⁶ In contrast, in the reaction of a series of perfluoroalkyl-1,3-diketones **77** with pentafluorophenylhydrazine in EtOH/HCl, the formation of 3-perfluoroalkylpyrazoles **78** (70-80%) has been claimed without support for the assigned regiochemistry.⁴⁷

3-Hetaryl-5-hydroxy-5-trifluoromethyldihydropyrazoles 80 have been obtained from a series of (3-oxo-4,4,4-trifluorobutanoyl)heterocycles 79 reacted with hydrazine hydrate under

mild conditions (*Scheme 14*).³⁹ Moreover, the reaction of *bis*(trifluoromethyl) diketone **64** ($R = CF_3$) with *p*-nitrophenylhydrazine or pentafluorophenylhydrazine produced the corresponding 5hydroxy-5-trifluoromethyl pyrazoline **81**.³⁹ The dehydration of these 5-hydroxypyrazolines into pyrazoles was shown to depend on structural features of the substrates. In this context, reinvestigation of the supposed formation of 3,5-*bis*(trifluoromethyl)pyrazoles from the reaction of *bis*(trifluoromethyl)diketone **64** ($R = CF_3$) and *N*-aryl or *N*-aroyl hydrazines in boiling ethanol⁴⁸ showed that the final products of the reaction were instead the corresponding 1-aryl- or 1-aroyl-3,5-*bis*(trifluoromethyl)-5-hydroxypyrazolines.⁴⁹ Reaction of the diketone **64** ($R = CF_3$) with methylhydrazine to give the 1-methyl-3,5-*bis*(trifluoro-methyl)-5-hydroxypyrazole **82** has been recently reported.⁵⁰

Other significant preparations from fluorinated β -diketones are: *i*) the synthesis of 3pentafluorophenyl-5-methylpyrazoles from pentafluorobenzoylacetone and arylhydrazines;^{51a} *ii*) the synthesis of *bis*(pyrazole)s (where the two pyrazole rings are linked by a perfluorinated chain at 5,5') by the reaction of hydrazine or arylhydrazine with *bis*- β -diketones, such as RCOCH₂(CF₂)_nCOCH₂COR.^{51b}

The use of a β -ketoester in the synthesis of fluoroalkylated pyrazoles is represented by the reaction of ethyl 4,4,4-trifluoroacetoacetate **83** with aqueous methylhydrazine to form both 5-hydroxy-3-(trifluoromethyl)pyrazole **84** (49%) and 3-hydroxy-5-(trifluoromethyl)pyrazole **85** (8%) (*Scheme 15*).⁵² Other examples are the reaction of fluorinated β -ketoesters with phenylhydrazine (yielding phenylhydrazones that are isolated and cyclocondensed into 3-fluoroalkyl-5hydroxypyrazoles),^{53a} hydrazine,^{53a} and benzylhydrazines.^{53b} Polyfluorinated α -acetyl- β ketoesters react with hydrazine to produce 4-alkoxycarbonylpyrazoles (45-50%).⁵⁴ Examples exploiting functionalized dicarbonyl compounds are: *i*) the reaction of 2-arylhydrazones of fluorinated 1,2,3-triketones **86** (R = Me, COOEt) with hydrazines to yield 4-arylazopyrazoles **87**;⁵⁵ and *ii*) the reaction of arylhydrazones of 2,3-diketoester **86** (R = OMe; R_F = C₄F₉) with hydrazine to yield pyrazolin-5-ones **88** (*Scheme 15*).⁵⁵ Additional examples of 2-(het)arylhydrazones of 1,2,3-triketones in the synthesis of 3-trifluoromethyl-4-arylazopyrazoles have been recently reported.⁵⁰

Ethyl polyfluoroacylpyruvates **89** react with hydrazine and phenylhydrazine at the β dicarbonyl moiety leading to stable 3-alkoxycarbonyl-5-fluoroalkyl-5-hydroxypyrazolines **90** (*Scheme 16*).⁵⁶ In contrast, the copper chelates of fluorinated acylpyruvates and hydrazines produce the corresponding pyrazoles.⁵⁷ In turn, pentafluorobenzoylpyruvate **89** ($R_F = C_6F_5$) reacts with hydrazines to yield the 3-carboxyethyl-5-pentafluorophenylpyrazoles **91**.⁵⁸ Lithium salts of fluorinated β -diketones have been used as fluorine-containing synthons for the preparation of fluorinated pyrazoles.⁵⁹ A review article on the use of perfluorinated acyl(aroyl) pyruvates in the synthesis of fluorinated pyrazoles has been published recently and essentially reports results from the Russian school.⁶⁰

The trifluoromethylated vinamidinium salt **93**, prepared as illustrated (*Scheme 17*), can be considered the synthetic analogue of a β -dicarbonyl compound. Its reaction with hydrazines produces 4-trifluoromethylpyrazoles **94** (77-81%).⁶¹

b) Syntheses from α,β -Unsaturated Carbonyl Compounds

A series of fluoroalkyl pyrazoles have been obtained from α,β -unsaturated carbonyl compounds of the type 95, where L represents a potential leaving-group (Scheme 18). Examples of this approach are reported for vinyl ethers 95 (L = OR) that react with hydrazine or methylhydrazine to directly afford 5-trifluoromethylpyrazoles 97 (65-98%).⁶² The 5-hydroxy-5-trifluoromethylpyrazolines 96 ($R^3 = Ph$) were isolated from the reaction with phenylhydrazine (after refluxing for 4 h in ethanol) and were claimed to be resistant to dehydration.⁶² A subsequent paper reports the formation of 1-phenyl-5-trifluoromethylpyrazole 97 ($R^1 = R^2 = H$; $R^3 = Ph$) from the corresponding vinyl ether 95 ($R^1 = R^2 = H$) and phenylhydrazine (by refluxing in ethanol for 24 h).⁶³ On the other hand, pyrazolines 99 ($R^1 = H$, Me, Aryl; $R^2 = H$, Me), isolated (73-96%) from the reaction of the corresponding vinyl ethers 95 (L = OR) with thiosemicarbazide, were transformed into the corresponding *1H*-pyrazoles 100 (57-75%) by treatment with H₂SO₄,⁶⁴ or into 1-methyl-5-hydroxy-5-trifluoromethylpyrazolines **96b** (68-90%) by treatment with methylhydrazine in THF (without mechanistic explanation, however) (Scheme 18).65 The formation of 5-hydroxy-5-trifluoromethyl pyrazolines is also reported from the reaction of the vinyl ether 95 (L = OEt; $R^1 = R^2 = H$) with pentafluorophenylhydrazine or perfluoroalkanoylhydrazines.63 The reaction of the same vinyl ether with methylhydrazine has been recently reinvestigated,⁶⁶ and some discrepancies in the previous report⁶² have been corrected. In fact, the reaction of compound 95 (L = OEt; $R^1 = R^2 = H$) and methylhydrazine in refluxing ethanol yields both 3-trifluoromethylpyrazole 98 ($R^1 = R^2 = H$; $R^3 = Me$) (52%) and the 5-hydroxy-5-trifluoromethylpyrazoline 96 ($R^1 = R^2 = H$; $R^3 = Me$) (18%), the latter being converted to the corresponding pyrazole 97 ($R^1 = R^2 = H$; $R^3 = Me$) by acid-catalyzed dehydration.^{66a} Similar results were observed in the reaction of different vinyl ethers 95 (L = OMe; $R^1 = H$; $R^2 = Me$) and 95 (L = OEt; $R^1 = Me$; $R^2 = H$) with methylhydrazine.⁶⁷

Other examples belonging to this general scheme are the reaction of: *i*) diethoxy compound **95** ($L = R^2 = OEt$; $R^1 = H$) with hydrazine and methylhydrazine;⁶⁸ *ii*) enaminones **95** ($L = NMe_2$) and sulfides **95** (L = SR) with hydrazines;⁶⁹ *iii*) the enone **95** (L = Cl; $R^1 = H$; $R^2 = Ph$) with phenylhydrazine in acetic acid by which both 5-trifluoromethyl- **97** ($R^1 = H$; $R^2 = R^3 = Ph$) (as major component) and the 3-trifluoromethylpyrazole **98** ($R^1 = H$; $R^2 = R^3 = Ph$) are formed.⁷⁰ Dihalovinyl trifluoromethyl ketones **95** ($R^1 = H$; $R^2 = L = Cl$, Br) are claimed to react with alkylhydrazines to yield 5-halo-3-trifluoromethylpyrazoles **101** (X = Cl, Br; R = Me or Et) (56-85%) directly.⁷¹ In the reaction of the dichlorovinyl compound with 2,4-dinitrophenylhydrazine, the arylhydrazone was isolated (62%) and then thermally cyclized in the presence of triethylamine (TEA) to the corresponding 3-trifluoromethyl-5-chloropyrazole **101** (X = Cl; R = 2,4-dinitrophenyl) (68%). Trifluoromethylpyrazoles **103** and **104** were obtained (45-75%) by reaction of fluorinated ketene dithioacetals **102** with hydrazines (*Scheme 19*).⁷²

The formation of trifluoromethyl pyrazoles from trifluoromethyl enone **106a** or acrolein **106b** and phenylhydrazine has also been reported and was shown to depend on experimental conditions (although not described in great detail) (*Scheme 20*). The formation of 5-trifluoromethyl derivatives **107a,b** is explained through the involvement of the phenylhydrazones initially formed under acid catalysis.⁷³ Another example is the reaction of **106b** with hydrazine hydrate in the presence of TEA leading to 4-phenyl-3(5)-trifluoromethylpyrazole **108** (64%) or with phenylhydrazine (used on the *in situ* generated β -mercaptovinylaldehyde) by which trifluoromethylpyrazole **107b** (56%) was directly obtained.⁷⁴ Similarly, the formation of the *bis*(pyrazole) **110** (47%) from the corresponding precursor **109** is reported.⁷⁴ Structurally correlated perfluoroalkyl enones **113** (formed in the photolytic reaction of α -chlorostyrenes **111** with perfluoroalkyl iodides **112** in the presence of hexabutylditin under oxygen atmosphere) react with hydrazine to produce 3(5)-perfluoroalkylpyrazoles **114** (40-48%) (*Scheme 20*).⁷⁵

4-Trifluoroacetyl-2,3-dihydropyrrole **115**, easily accessible from *N*-methoxycarbonylproline **118** and trifluoroacetic acid anhydride,⁷⁶ is a useful synthon for the synthesis of trifluoromethylpyrazoles containing a β -aminoethyl side-chain. The reaction of **115** with hydrazine or phenylhydrazine hydrochlorides produced **116a,b** in about 90% yield.⁷⁷ In the case of the reaction with methylhydrazine, both the 3-trifluoromethyl pyrazole **116c** (52%) and its regioisomer **117** (31%) were obtained (*Scheme 21*). The reaction is rationalized through the initial formation of the carbinolamines at the COCF₃ moiety (isolated in neutral conditions) followed by ring closure – ring opening processes.⁷⁷ Similarly, the trifluoroacetyl-lactone **119** reacted with hydrazine [in the presence of *p*-toluenesulfonic acid (TsOH)] producing the pyrazole **120** (60%), supposedly through a hydrazone intermediate.⁷⁸ The trifluoroacetyldihydrofuran 122 (n = 0) and dihydropyran 122 (n = 1), which can be considered as the cyclic analogues of vinyl ethers 95 (L = OR; *Scheme 18*), react with

OCHCINC #

hydrazine to give excellent yields of trifluoromethylpyrazoles 121 (*Scheme* 22).⁷⁹ At first glance, the reaction could be understood through the involvement of a carbinolamine of the trifluoroacetyl group. This result agrees with the report claiming the isolation of an hydrazone (80%) at the COCF₃ moiety from the reaction of the dihydropyran 122 (n = 1) with hydrazine.⁸⁰ However, later reports regarding the reaction of substrates 122 with substituted hydrazines suggest that the nucleophilic attack of the reagent should involve the β -carbon in a Michael-type reaction.⁶³ In fact, from the reaction of the dihydropyran 122 (n = 1) with phenylhydrazine the 1-phenyl-5-trifluoromethylpyrazole 123 (36%) was isolated. Moreover, from the reaction of dihydrofuran 122 (n = 0) and dihydropyran 122 (n = 1) with pentafluoro- or tetrafluorophenylhydrazine the 5-hydroxy-5-trifluoromethyl compounds 124 were isolated in about 46-71% yields.⁶³ In turn, dehydration of 124 into pyrazoles 125 can be achieved by treatment with P₂O₅ (*Scheme* 22).⁶³

Alkylhydrazines and fluorinated alkynoates **126** produced 1-alkyl-3-hydroxy-5-fluoroalkylpyrazoles **127** as the major regioisomeric product (*Scheme 23*). The regioisomeric ratio was found to be dependent on the experimental conditions, the hydrazine reagent, and the $R_{\rm F}$ group.⁸¹ The 3(5)-fluoroalkylpyrazoles **130** (76-92%) were formed from the reaction of fluoroalkylacetylenes **129** and hydrazine through an isolated 5-hydroxy-5-fluoroalkyl intermediate.⁸² Other examples of reactions of fluorinated ketoalkynes with hydrazine have been reported.⁸³ The reaction of α,β -unsaturated esters **131** with methylhydrazine yields 1-methyl-3-hydroxy compounds **127** (R = Me) preferentially (*Scheme 23*).⁸⁴

Perfluoroalkylpropynonitrile **133** has been used for the synthesis of amino-substituted perfluoroalkylpyrazoles (*Scheme 24*).⁸⁵ Thus, the reaction of **133** with hydrazine or methylhydrazine produces the 3(5)-amino compound **134** (R = H) or 3-amino-5-perfluoroalkylpyrazole **134** (R = Me), respectively (50-52%). In contrast, the reaction of **133** with phenylhydrazine yielded the 5-amino-3-perfluoroalkylpyrazole **132** (86%). An initial attack of the more nucle-ophilic nitrogen of the reagent at the β -carbon of the propynonitrile **133** explains the observed regioselectivity.⁸⁵

(c) Syntheses from Polyfluoroalkylcarbonyls Compounds

3(5)-Perfluoroalkylpyrazoles **139** have been prepared in excellent yields by reaction of various fluoroalkyl aldehydes **137** (easily accessible by reaction of fluoroalkyl iodides **135** with ethyl vinyl ether **136** in the presence of sodium dithionite and sodium hydrogen carbonate) with hydrazine acetate (NH₂NH₂•HOAc).⁸⁶ By the same methodology, starting from α, ω -diiodoper-

fluoroalkane 135 (X = I), *bis*(pyrazole)s 138 have also been obtained.⁸⁶ In a similar reaction, structurally related fluoroalkyl ketones and fluoroalkylacetates have been used in the synthesis of 3(5)-perfluoroalkyl substituted pyrazoles (*Scheme 25*).⁸⁷

Similarly, perfluoroalkyl hemiacetals 141, prepared from perfluoroalkyl iodides 135 and dihydropyran 140, were succesfully used for the synthesis of 3-perfluoroalkylpyrazoles 143 (*Scheme 26*). Again, the use of the α, ω -diiodoperfluoroalkane 135 (X = I; n = 6) provided the *bis*(pyrazole) 144.^{87a}

Fluoroalkyl iodides 145 and alkynes 146, under free radical reaction conditions, form adducts 147 that produced 3-perfluoroalkyl pyrazoles 148 (90%) upon reaction with an excess of hydrazine monohydrate (*Scheme 27*).⁸⁸ Alternatively, perfluoroalkyl-acetylenes 149 and hydrazine hydrate in ethanol produced 3,5-disubstituted pyrazoles 148 in almost quantitative yields.⁸⁹ Fluorinated acetylenic imines (the cross coupling products of fluorinated *N*-aryl imidoyl iodides with acetylenes) have also been used to synthesize 3-perfluoroalkylpyrazoles.⁹⁰ Perfluorinated 3-methyl-2-pentene 150 reacted with phenylhydrazine in the presence of TEA and produced the *tris*(trifluoromethyl)-1-phenylpyrazole 151 (84%).⁹¹

Finally, 4-trifluoromethyl-1-alkylpyrazoles 154 are prepared in good yields by trifluoroacetic anhydride-pyridine (TFAA/Py) induced cyclization of C-trifluoroacetyl-N,N-dialkylhydrazones 152 which is rationalized through the ylide-like intermediate 153 (Scheme 28).⁹²

3-Trifluoromethyl-4-phenylsulfonylpyrazoles **157** are reported (50-80%) by heterocyclization of hydrazones **156**, easily accessible from the sulfone **155** (*Scheme 28*).⁹³

d) Syntheses from Cycloaddition Reactions

1,3-Dipolar cycloadditions of sydnones, diazoalkanes, and nitrilimines on acetylenic or ethylenic systems have been used for the synthesis of fluorinated pyrazoles. For example, trifluo-romethylarylacetylenes (1-aryl-3,3,3-trifluoropropynes) reacted in highly boiling solvents with sydnones **50** (R = Aryl, Alkyl) with elevated regioselectivity to produce 4-trifluoromethylpyrazoles **158** together with small amounts of regioisomers **159** (*Scheme 29*).⁹⁴ Cycloaddition of the *N*-phenylsydnone **50** (R = Ph) onto perfluorobut-2-yne affording the 3,4-*bis*(trifluoromethyl)-1-phenylpyrazole **160** (70%) is also reported.³⁰

Various examples using cycloadditions with diazomethane are reported.⁹⁵ For instance, fluoroacrylates **161** reacted with diazomethane to produce 4-fluoroalkyl- **162** and 3-fluoroalkylpyrazoles **163** (in a 9/1 ratio) in a total 80-90% yield (*Scheme 30*). In this case, the first formed 1*H*-pyrazole underwent a methylation with excess of diazomethane.⁹⁶ Cycloadditions

between perfluoroalkenes and diazomethane leading to perfluoroalkyl-pyrazolines have also been reported.⁹⁷ Tributyl-(3,3,3-trifluoro-1-propynyl)-stannane **165**, readily prepared from 2-bromo-3,3,3-trifluoropropene **164**, and diazomethane exclusively yields the corresponding trifluoromethylpyrazole **166** (64-70%) (*Scheme 30*).⁹⁸ Furthermore, the tributylstannyl group allowed the regioselective introduction of various substituents on the pyrazole ring.⁹⁸

Polyfluoroalkylpyrazoles **168** (major product) and **169** are formed in high yields by reaction of ethyl diazoacetate with polyfluoroalkyl alkynes **167** (*Scheme 31*).⁹⁹ On the other hand, hexafluorovinyl ketones **170** and ethyl diazoacetate lead to pyrazolines **171** (66-82%), which are transformed into the corresponding 4-aroylpyrazoles **172** (57-72%) by heating at 150°C in the presence of azo-*bis*(isobutyronitrile) (AIBN).¹⁰⁰

Finally, 4-trifluoromethylpyrazoles 174 (together with modest amounts of their regioisomers 175) have been obtained, in good yields, from the cycloaddition reaction of trifluoromethylarylacetylenes 173 with nitrilimines (*Scheme 32*).¹⁰¹ Hydrazonyl halides 176 react with fluorinated β -ketoesters 177a or β -diketones 177b (in their enolate form) exclusively producing

5-perfluoroalkypyrazoles **178** (74-86%) through the initially formed (although not isolated) 5hydroxy-2-pyrazolines.¹⁰² A cycloaddition reaction also occurs between hydrazonyl chlorides and trifluoroacetylacetonitrile.¹⁰³ *N*-Aryl-*C*-(trifluoromethyl)hydrazonyl halides react with β diketones, β -ketoesters and congeners under alkaline conditions to produce the corresponding 3trifluoromethyl-pyrazoles.¹⁰⁴

II. IMIDAZOLES¹⁰⁵

1. Ring-fluorinated Imidazoles

Several ring-fluorinated imidazoles are known. For a series of mono- and polyfluorinated compounds, MNDO calculations have also been reported.⁶ A more recent theoretical study deals the 2,4,5-trifluoroimidazole as a proton carrier for water-free fuel cell membranes.¹⁰⁶

The general and historic methodology for introducing a fluorine atom directly onto the imidazole ring consists of the photochemical decomposition of imidazole diazonium fluoroborates. Obviously, this approach requires the presence of an amino group which will eventually be replaced by the fluorine. Common precursors of the aminoimidazoles can be the corresponding nitro-, azo-, or azidoimidazoles (from the corresponding carboxylic acid). Several ring-fluorinated imidazoles have been prepared with this methodology.¹⁰⁷ 2-Fluorohistidine and 2-fluorohistamine can be prepared by a similar procedure.¹⁰⁸ In some cases, the photochemical degradation of diazonium tetrafluoroborates has been performed directly on the imidazole portion of histidine in peptides such as thyroliberin.¹⁰⁹ A representative procedure is reported (*Scheme 33*) for 4,5-difluoroimidazole **181** (36%),¹¹⁰ and ethyl 2,4(5)-difluoroimidazole-5(4)-carboxylate **183** (53%),¹¹¹ starting from the common precursor **179**.

An example of electrophilic ring-fluorination is reported on stannylated *N*-methylimidazole **184** (*Scheme 34*). The formation of the fluorinated compound **185** was supported by NMR evidence only, since the reaction was not carried out on a preparative scale.¹¹² Fluorination of the 2,4-dinitroimidazole **186** produces the *N*-fluoro compound **187** (yields not reported) which was

claimed to act as a fluorinating reagent for polycyclic aromatic hydrocarbons (PAHs).¹¹³ In fact, the electron-withdrawing effect of the two nitro groups weakens the *N-F* bond allowing the transfer of a fluorine atom to PAHs under mild conditions. An example of a transhalogenation reaction is reported for the fluorination of 2-bromo-1-methyl-4,5-dicyanoimidazole **189**¹¹⁴ with KF in the presence of a catalytic amount of 18-crown-6 ether in diglyme, leading to the corresponding 2-fluoro derivative **190** (89%) (*Scheme 34*).¹¹⁵

A series of 5-fluoro-4-trifluoromethylimidazoles **192** has been prepared (58-65%) through cyclodefluorination of fluorinated amidines **191** mediated by tin(II) chloride.¹¹⁶ This reaction, studied mostly by Burger's research group, is of general type, and the same kind of

heterocyclization takes place in the case of the corresponding carboxamides and thiocarboxamides allowing the synthesis of oxazole and thiazole derivatives, respectively (see later). The reaction sequence (*Scheme 35*) involves heterocyclic tin(IV) compounds of the type **193** as intermediates.¹¹⁶ In a similar cyclization using germanium(II) chloride, the corresponding cyclic intermediate has been isolated and characterized by X-ray analysis.¹¹⁷

2. Fluoroalkylated Imidazoles

a) Side-chain Fluorinated Imidazoles

For the synthesis of biologically important side-chain fluorinated imidazoles, the recent review by Dolensky *et al* should be consulted.¹¹⁸ Fluoromethylimidazoles **195** and **196** and difluoromethylimidazoles **197** and **198** (*Fig. 2*) have been prepared by deoxyfluorination, with [*bis*(2-methoxyethyl)amino]sulfur trifluoride (*Deoxo-fluor*TM), of the corresponding *N*-trityl protected (hydroxymethyl)imidazoles or formylimidazoles, respectively.¹¹⁹

A series of papers reports the synthesis of side-chain fluorinated hystamine and hystidine analogues containing one or two fluorine atoms at the carbon adjacent to the imidazole ring. β -Fluorohystamine **201a** had been prepared earlier by fluorodehydroxylation of β -hydroxyhistamine with SF₄ in HF.¹²⁰ A recent different approach consists of the "F-Br" addition to an *N*trityl-protected 4-vinylimidazole **199**. The addition is achieved by treatment with *N*-bromosuccinimide (NBS), in the presence of a TEA(HF)₃ complex, and occurs with Markovnikov regioselectivity producing the bromofluoro compound **200a** (74%). Subsequent substitution with azide, and then reduction and removal of the trityl group provides β -fluorohystamine **201a** in its

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

dihydrochloride form.¹²¹ (*Scheme 36*). Similarly, elimination of HBr from **200a**, followed by a second addition of "F-Br", produced **200b** from which the β , β -difluoro-hystamine **201b** was obtained.¹²¹ The same approach has also been used for the synthesis of β -fluorourocanic acid and congeners,¹²² as well as for β -fluoro- and β , β -difluorohystidinols **202**.¹²³

The reaction of imidazole with difluorochloromethane in alkaline medium produces the *N*-difluoromethyl substituted derivative **203** (R = H) (37%) (*Fig. 3*).¹²⁴ Similarly, 2-phenylimidazole produced the *N*-difluoromethyl derivative **203** (R = Ph) (75%), while 4(5)-phenylimidazole yielded a mixture of the two 4-phenyl- **204** (43%) and 5-phenyl- **205** (30%) regioisomers.¹²⁵ The difluoromethylation of 2-mercapto-4(5)-(4-nitrophenyl)imidazole occurred at both reaction sites.¹²⁶ Interestingly, a series of *N*-polyfluoroalkylimidazoles of the type **206** has been obtained by reaction of imidazole with polyfluorinated alkenes in the presence of base or KF.¹²⁷

N-bromodifluoromethylimidazoles **208** are obtained from the reaction of potassium salts of imidazoles with dibromodifluoromethane.^{128,129} Modification of the bromodifluoromethyl group in **208** can lead to difluoromethyl derivatives **203** (95%), to *N*-trifluoromethyl derivative **209** (30%), or to the silyl derivatives **210** (75-85%) (*Scheme 37*). The silyl derivatives **210** have been used as a reagent for a series of reactions with carbonylic compounds.¹²⁹ The *bis*(imidazoles) have been patented as fluorinating reagents.¹³⁰ Nucleophilic substitution of pentafluorobenzenes with imidazole (in the presence of a base) produced *N*-tetrafluorophenylimidazoles **212** in high yields when X is an electron-withdrawing group (e. g., X = NO₂, CN, COOEt).¹³¹

b) Perfluoroalkylation Reactions

The conversion of a carboxylic moiety into a trifluoromethyl group has also been applied in the imidazole series (*Scheme 38*). For instance, 2-trifluoromethyl-imidazole **217** and 2,4,5-*tris*(trifluoromethyl)imidazole **215** were obtained by fluorination with sulfur tetrafluoride

of the corresponding imidazole 2-carboxylic acid and 2-trifluoromethyl-4,5-dicarboxylic acid **214** (easily accessible from oxidative cleavage of the commercially available 2-trifluoromethylbenzimidazole **213**), respectively.¹³² A series of functional group modifications allowed the transformation of **214** into **216**.¹³³ Similarly, the 4,5-*bis*(trifluoromethyl)imidazole **218** was obtained from the corresponding dicarboxylic acid and molybdenum hexafluoride.¹³⁴

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

Besides the above modification reactions, the direct introduction of a trifluoromethyl, or more generally of a perfluoroalkyl group in the imidazole ring is well documented and is mainly used to obtain target compounds. The reaction can be performed under different experimental conditions and often involves photochemical, electrochemical or metal-catalyzed processes to generate the perfluoroalkylating reagent. A recent example of the reaction between a perfluoroalkylzinc or copper reagent with a iodoaromatic substrate is illustrated (*Scheme 38*) for the preparation of **220** (75-85%), a useful precursor in the synthesis of *angiotensin II* antagonists.¹³⁵

A general procedure for the perfluoroalkylation of the imidazole ring is based on the photo-induced dissociation of the *C-I* bond of a perfluoroalkyl iodide. Through a radical substitution route, either the C(4) or the C(2) of the imidazole ring can be perfluoroalkylated, the former generally being the preferred site. The reaction is rather slow with isolated yields of 4-R_{F} imidazoles ranging between 34 and 61% and those of the 2- R_{F} between 10 and 33%.¹³⁶ 1-Alkylimidazoles are trifluoromethylated mainly at the C(5), although some amount of 2- and 4-perfluoroalkykated products are observed. As expected, trifluoromethylation of arylimidazoles mainly involves the azole rather than the phenyl ring. For example, trifluoromethylation of 2-(4-methoxyphenyl)-imidazole leads to the corresponding 4-trifluoromethyl substituted imidazole (55%).¹³⁷ Recently, photochemical trifluoromethylation has been successfully carried out on substituted imidazoles carrying electron-withdrawing groups as in the illustrative examples (*Scheme 39*).¹³⁸ The photo-induced trifluoromethylation also takes place in the case of *N*-acylhistamines and *N*-acylhistidine esters leading to ring substitution at the C(2) (13-27%) or C(4) (23-34%).^{137,139} Moreover, the direct photochemical trifluoromethylation of a histidine-containing tripeptide is also reported.¹⁴⁰

High yields of 4(5)-fluoroalkylimidazoles 232 (52-86%) were obtained by the regioselective reaction of the imidazole anion (sodium imidazolide) 231 (acting as an electron-donor

species) with fluoroalkyl iodides or bromides in DMF under laboratory light, and results have been rationalized by assuming an $S_{RN}1$ mechanism (*Scheme 40*).¹⁴¹ The 4(5)-fluoroalkylimidazoles **232** (63-67%) were also formed in the reaction of imidazole **230** with R_FC1 in the presence of sodium dithionite in DMSO.¹⁴²

Perfluoroalkylation of imidazoles is also conveniently realized by electrochemically induced S_{RN} 1 substitutions. For instance, electrochemical reduction of perfluoroalkyl halides

(CF₃Br, n-C₄F₉I, n-C₆F₁₃I) in the presence of differently substituted imidazoles yielded the corresponding perfluoroalkylated compounds.^{143,144} Representative examples of preparative scale electrolysis, where imidazole tetramethylammonium salts **233** are used in the presence of 4-nitropyridine *N*-oxide, are illustrated (*Scheme 41*).¹⁴⁴ Note that, in the case of **233** (R = H), perfluoroalkylation reaction takes place either at C(5) or at C(2), and a mixture of the corresponding **234** and **235** (in a 2:1 ratio) is formed in 65% combined yields.

c) Syntheses from Heterocyclization Reactions

The synthesis of 4(5)-trifluoromethylimidazoles **239** (R = Ar) (15-47%) and 2,4(5)bis(trifluoromethyl)imidazole **239** (R = CF₃) (46%) has been achieved through the classical cyclocondensation reaction of α -dicarbonyls with ammonia and aldehydes (*Scheme 42*).¹⁴⁵ Similarly, 4(5)-trifluoromethylimidazoles **241** can be prepared from 3,3-dibromo-1,1,1-trifluoroacetone **240** (after its hydrolysis with sodium acetate).¹⁴⁶

In an analogous synthetic approach, fluorinated *N*,*N*-dimethylhydrazones **243**, easily prepared from formaldehyde dimethylhydrazone **242** and trifluoroacetic or pentafluoropropionic anhydrides, were considered as the synthetic equivalent of fluorinated ketoaldehydes. Their reaction with aldehydes in the presence of ammonium acetate in acetic acid produced the corresponding 4(5)-perfluoroalkylimidazoles **244** (61-68%) (*Scheme 43*).¹⁴⁷ (Note that *ab initio* calculations showed that the 4-trifluoromethyl tautomer is more stable than the 5-trifluoromethyl one).¹⁴⁷ Additional examples of this approach have been reported.¹⁴⁸ The fluorinated *N*,*N*-dimethylhydrazone, has been used as a perfluorobiacetyl analogue in the synthesis of the 4,5-*bis*(trifluoromethyl)imidazole **246** (35%).^{148a} The 4-(trifluoromethyl)imidazoles **247** are similarly obtained by using 1,1,1-trifluoro-2,3-alkandiones **248** prepared from various trifluoroacetylated aldehyde in the presence of

ammonium acetate and, after treatment with HCl, produced N-hydroxy-4-trifluoromethylimidazoles **250** (60-72%) (Scheme 43).¹⁴⁹

A thermally-induced cyclization of trifluoroacetylated arylaldehyde *N*,*N*-dialkylhydrazones 251 is claimed to yield trifluoromethyl substituted imidazole regioisomers 252 and 253 in different ratios depending on experimental conditions (*Scheme 44*).¹⁵⁰ For instance, compounds 251a,b in refluxing toluene mainly produced 5-trifluoromethylimidazoles 252a,b in good yields.¹⁵⁰ Similarly, dimethylhydrazone 254 is converted into 255 (78%). On the other hand, thermal cyclization of 251a in the presence of silica gel lead to the regioisomeric 4-trifluoromethylimidazoles 253a as the major product.¹⁵⁰ The influence of various parameters on this reactivity has been considered but no explanation of the obtained results is reported.^{151,152}

Following a cycloaddition model, the synthesis of 5-trifluoromethylimidazoles **260** could be achieved, with high regioselectivity and in 59-85% yields, by the base-induced reaction of ethyl isocyanoacetate with trifluoroacetimidoyl chlorides **256** (*Scheme 45*).¹⁵³

4-Perfluoroalkylimidazoles **264** can be conveniently synthesized from the mesoionic 4-perfluoroacyl-1,3-oxazolium-5-olates **262**, that are easily prepared from *N*-acyl-*N*-alkylglycines **261** and perfluoroalkanoyl anhydrides (*Scheme 46*).¹⁵⁴ The reaction of **262** with ammonium acetate in DMF yields hydroxyimidazolines **265** (78-98%) through the regioselective attack of ammonia on the C(2) of the oxazole nucleus. Subsequent dehydration of **265** by treatment with POCl₃ and pyridine yielded compounds **264** (88-99%).¹⁵⁴ On the other hand, the reaction of mesoionic 1,3-oxazolium-5-olates **262** ($R_F = CF_3$) with amidines mainly lead to 5perfluoroacyl-imidazoles.¹⁵⁵

Finally, the classical photochemical rearrangement of pyrazoles into imidazoles has to be mentioned, even though this approach is not appropriate for a preparative scale synthesis. The reaction follows the conventional pathways typical of five-membered heterocycles.¹⁵⁶ In the reported example, trifluoromethyl substituted 1-methylimidazoles (*Fig. 4*) are formed by photoinduced ring-atoms transposition of trifluoromethyl substituted 1-methylpyrazoles following different routes, depending on the substrate.¹⁵⁷

III. ISOXAZOLES¹⁵⁸

1. Ring-fluorinated Isoxazoles

An example of ring-fluorinated isoxazoles prepared by conventional modification of an amino group is the 5-fluoroisoxazole **271** (40%) (*Scheme 47*).¹⁵⁹ Alternatively, the availability of various electrophilic fluorinating reagents¹⁶⁰ allows one to realize a direct annular fluorination.

For instance, transfer-fluorination reactions of 3,5-diarylisoxazoles **272** by using the "N-F" reagent "F-TEDA-BF₄"¹⁶¹ produced the corresponding 4-fluoroisoxazoles **273** in 28-39% of yields (*Scheme 47*).¹⁶² When an electron-withdrawing substituent was present in the 5-aryl moiety, higher temperatures were required and, in this case, trifluoroisoxazolines **274** were isolated as a by-product.

Besides these examples, 4-fluoroisoxazoles are obtained by using the reaction between α -fluoro- β -dicarbonyl compounds and hydroxylamine (*Scheme 48*). For example, 4-fluoroisoxazole **275** (R¹ = R² = Ph) is formed in 33% yield from the reaction of fluorinated diketone **15** (R¹

= R^2 = Ph) with hydroxylamine hydrochloride in ethanol and in the presence of sulfuric acid.¹⁶ In the case of the unsymmetrical diketone **15** (R^1 = Me; R^2 = CF₃) only the 3-trifluoromethyl-4-fluoro-5-methylisoxazole **275** (R^1 = Me; R^2 = CF₃) was claimed as a result of an attack of the nucleophilic reagent on the more electrophilic carbonyl of the non-enolized substrate.¹⁶ Similarly, the synthesis of 3,5-*bis*(dimethylamino)-4-fluoroisoxazole **276** from a suitably fluorinated 1,3-dielectrophilic substrate has been reported.¹⁶³

2. Fluoroalkylated Isoxazoles

General approaches towards fluoroalkylated or perfluoroalkylated isoxazoles take advantage of common methodologies for building the isoxazole heterocycle from open-chain precursors: *i*) the cyclocondensation reactions of 1,3-dielectrophilic compounds with hydroxylamine; and *ii*) the cycloaddition reactions of 1,3-dipolar reagents (such as nitrile oxides) to suitable dipolarophiles. An example consisting of a modification of a functional group linked to the isoxazole ring is the fluorination of the 5-trichloromethylisoxazole with hydrogen fluoride or antimony trifluoride which produces a mixture of side-chain mono or polyfluorinated compounds.¹⁶⁴

a) Syntheses from β -Dicarbonyl Compounds

It is well known that the reaction of β -dicarbonyls with hydroxylamine is a general synthetic approach to 3,5-disubstituted isoxazoles. As already cited in the pyrazole series, the widely accepted mechanism consists of a nucleophilic attack by the nitrogen end of the hydroxylamine on the more electrophilic site of the dicarbonyl compound. The resulting carbinolamine will undergo cyclization/dehydration steps into the 5-hydroxyisoxazoline, which can eliminate another molecule of water in the rearomatization step yielding the final isoxazole.³⁴ In the case of asymmetric diketones, the reactivity of the electrophilic centers, and hence the final regiochemistry, is affected and/or controlled by the keto-enolic tautomeric equilibria which in turn are also determined both by the reaction medium and by the presence of the fluorinated moiety.⁴¹ Moreover, as already observed in the pyrazole series, the resistance to dehydration of the 5-hydroxy-5perfluoroalkyl-2-isoxazolines allows them to be isolated.

Historical examples exploiting this approach are the reaction of diketones 277 with hydroxylamine hydrochloride producing the 5-hydroxy-5-perfluoroalkyl-isoxazolines 278 (83-94%) (*Scheme 49*).¹⁶⁵ The latter were then dehydrated with polyphosphoric acid (PPA) at 180-200°C to produce the corresponding isoxazoles 279 in 75-90% yield. Other examples claim the synthesis of 3-perfluoroalkyl-5-arylisoxazoles 280 from diketones and hydroxylamine hydrochloride in pyridine,¹⁶⁶ although the reported regiochemistry can be questioned.

The reaction of the diketone **281** with hydroxylamine is reported to produce the 5hydroxy-5-trifluoromethylisoxazoline **282** (91%) (*Scheme 50*).¹⁶⁷ Subsequent dehydration of **282** to the isoxazole **283** (91%) is then achieved by reflux in trifluoroacetic acid (TFAA). The same reaction was repeated more recently¹⁶⁸ disproving the previously reported formation of an oxime leading to the 3-trifluoromethyl regioisomer.¹⁶⁹ Very recently the reaction of hydroxylamine with

various aryl trifluoromethyl- β -diketones leading to 5-hydroxy-5-trifluoromethyl-isoxazolines and their dehydration to 5-trifluoromethylisoxazoles has been overviewed.¹⁷⁰ The preparation of the 3,5-*bis*(trifluoromethyl)isoxazole **284** (R = CF₃) (83%) from the corresponding diketone **64** (R = CF₃) and hydroxylamine in the presence of sulfuric acid has been reported,^{16b} whereas the unsymmetrical methyl-trifluoromethyl diketone **64** (R = Me) produces a mixture of both **284** (R = Me) and **285** (in 2:1 ratio) in 73% overall yield (*Scheme 50*).^{16b} The 5-hydroxy-5-trifluoromethylisoxazolidin-3-one **289** is formed (56%) from the reaction of ethyl trifluoroacetylacetate **288** with hydroxylamine in alkaline media (*Scheme 51*).¹⁷¹ Even though the assigned structure has been supported by X-ray diffraction data, the proposed mechanism involving the initial attack of the oxygen end of hydroxylamine on the trifluoroacetyl carbonyl may be questioned. However, this result conflicts with a previous (uncited) patent

describing the reaction of **288** with hydroxylamine free-base leading to a mixture of the 3-trifluoromethyl-5-hydroxy derivative **286** (isolated as sodium salt after final treatment with EtONa) and the oxime **287** which has also been isolated and cyclized into the isoxazole after treatment with a base (*Scheme 51*).¹⁷²

The reaction of the 2-arylhydrazono-2,3-diketoester **86** ($R_F = CF_3$; R = OMe) with hydroxylamine produces the corresponding isoxazolin-5-one **290**. Similar reaction on the 2-aryl-hydrazono-1,2,3-triketone **86** [$R_F = H(CF_2)_2$; R = Me] gives the 3-hydroxyisoxazoline **291** which is claimed to be stable to dehydration (*Scheme 52*).⁵⁵ The synthesis of 3-trifluoromethyl-4-arylazo-5-arylisoxazoles **292** has been also reported;¹⁷³ however, a recent reinvestigation questioned the

assigned regiochemistry, the correct product structure being that of the 5-trifluoromethyl-3-aryl regioisomers.¹⁷⁰ Ethyl pentafluorobenzoyl-pyruvate **293** and its copper salt, react with hydroxy-lamine to afford 5-pentafluorophenylisoxazole **294** as the final product (*Scheme 52*).⁵⁸

b) Syntheses from α,β -Unsaturated Carbonyl Compounds

Fluorinated enol ethers **295** ($R_F = CF_3$) react with hydroxylamine hydrochloride in the presence of pyridine to yield the 5-hydroxy-5-(trifluoromethyl)isoxazolines **296** ($R_F = CF_3$) (68-

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

80%) through a nucleophilic attack of the reagent at the β -carbon atom (*Scheme 53*).¹⁷⁴ The same reaction is claimed in the case of cyclic enol ethers **122**, from which formation of isoxazolines **298** (60-90%) is reported.¹⁷⁴ This result appears in conflict with the isolation of an oxime at the COCF₃ moiety such as **299**⁸⁰ (see also the Pyrazole Section).

Similarly, enol ethers **295** ($R_F = CF_3$; $R^1 = Me$; $R^2 = Ar$; $R^3 = H$) yielded the corresponding isoxazolines **296** or isoxazoles **297** that could be also directly obtained by using an excess of hydrochloric acid.¹⁷⁵ An additional example leading to a 5-hydroxy-5-trifluoromethylisoxazoline **296**, which could be dehydrated with P_2O_5 into the corresponding 5-trifluoromethylisoxazole, has been reported.¹⁷⁶ The 5-hydroxy-isoxazolines **296** ($R_F = CF_3$, C_2F_5 ; $R^2 = OEt$, $R^3 = H$) were obtained (80-88%) from the corresponding diethoxyenones **295** ($R_1 = Et$; $R_2 = OEt$) and hydroxylamine hydrochloride in H_2O/Py .⁶⁸ In a similar reaction, perfluoroalkyl enone **300**, prepared by solvolysis of **113** (Ar = Ph) yielded the 5-perfluoroalkylisoxazole **301** (40%) (*Scheme 54*).⁷⁵

Trifluoromethyl compounds **106a**, **106b**, and **304** have been reported as starting substrates for the synthesis of trifluoromethyl isoxazoles, although scarse experimental details were furnished (see also the Pyrazole Section). The reaction with sodium azide in acetic acid produced isoxazoles directly, through decomposition of the initial formed azides (*Scheme 55*).⁷³ The same reaction was recently used for the preparation of regioisomers **302** and **283**.¹⁶⁸ In the case of acrolein **106b**, the isoxazole **305** arises from cyclocondensation of the corresponding oxime (*Scheme 55*).⁷³

The reaction of fluorinated α,β -ynones 129 (R = Alkyl; X = H, F) with hydroxylamine represents an example of regiochemistry controlled by acidic or basic reaction conditions (*Scheme 56*). The reaction between 129 and hydroxylamine hydrochloride in acetic acid produces the oxime 306 which can be cyclized by refluxing in benzene with azeotropic removal

of water, to yield the 3-polyfluoroalkyl regioisomer **308** (80%).⁸² In contrast, when the reagent was used in the presence of MeONa, the resulting isoxazoline **307** provided the 5-fluoroalkyl regioisomer **309**.⁸² This methodology has also been used to obtain a target 5-substituted 3-trifluoromethyl-isoxazole.¹⁷⁷ The preparation of the 3-trifluoromethyl-5-phenylisoxazole **302** by condensation of fluorinated ynone **129** (R = Ph; X = F) with hydroxylamine hydrochloride was also reported.¹⁶⁸

The reaction of fluorinated β -ketonitriles **311** and hydroxylamine was reported for the synthesis of amino-substituted perfluoroalkylisoxazoles, which are useful precursors of herbicides, fungicides, bactericides, and drugs. However, in this case also a rather incomplete description is given in patent literature.¹⁷² In fact, the reaction of trifluoroacetylacetonitrile **311** (R = H; R_F = CF₃) with hydroxylamine hydrochloride in methanol at reflux is reported to furnish the 5-

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

amino-3-trifluoromethylisoxazole **310** (53%).¹⁷² In contrast, the reaction of a series of β -ketonitriles **311** with hydroxylamine free-base (from the hydrochloride and sodium bicarbonate), is reported to furnish the 3-amino-5-perfluoroalkyl regioisomer. The representative **312** (R_F = CF₃; R = Me) was obtained in 32% yield,¹⁷⁸ methyl 5-amino-3-(trifluoromethyl)isoxazole-4-carboxylate **315** (34% final yield) is also obtained in a three-step one-pot synthesis from the reaction of methylcyanocetate **313** and trifluoroacetic anhydride (TFAA) as illustrated (*Scheme 57*).¹⁷⁹

c) Syntheses from Perfluoroalkylcarbonyl Compounds

Both *E* and *Z* isomers of 1-polyfluoroalkyl-2-iodoalkenes **147** [see their use in the synthesis of perfluoroalkyl pyrazoles (*Scheme 27*)], react with hydroxylamine hydrochloride in the presence of potassium carbonate affording 5-polyfluoroalkyl isoxazoles **317** (80-96%) through the oxime intermediate **316** (*Scheme 58*).^{88b,180}

The reaction of per(poly)fluoroalkyl cyclohexanones **318** with hydroxylamine allows the regiospecific synthesis of per(poly)fluoroalkylisoxazoles **320** and **323** (*Scheme 59*). When the reaction was carried out in the presence of potassium carbonate, fluoroalkylisoxazoles **320** were obtained (75-90%).¹⁸¹ The formation of this regioisomer is rationalized through the Michael-type addition of hydroxylamine onto the initially formed α,β -unsaturated carbonyl compound derived from **318**. In contrast, the reaction with hydroxylamine hydrochloride proceeds through the oxime intermediate **321** from which isomeric isoxazoles **323** are formed (45-50%) after treatment with K₂CO₃.¹⁸¹

d) Syntheses from Cycloaddition Reactions

In the cycloaddition reaction of nitrile oxides with alkynes or suitable alkenes as dipolarophiles, the fluorinated moiety can be part of either one or both the reagents involved in the cycloaddition. Aromatic nitrile oxides, which can be obtained *in situ* from the corresponding hydroximoyl chlorides in the presence of triethylamine (TEA), react with various substituted 1aryl-3,3,3-trifluoropropynes **173** to give the 4-trifluoromethylisoxazoles **324** together with small amounts of the regioisomer **325** (*Scheme 60*).¹⁸² The yields range between 17-88% as a function

of the aryl substituent, and the observed regioselectivity has been explained in terms of HOMOdipole/LUMO-dipolarophile control.¹⁸² High yields (~90%) of 5-perfluoroalkylisoxazoles **327** as the preferred regioisomer have been reported from the cycloaddition of aromatic nitrile oxides and methyl perfluoro-2-alkynoates **326**.¹⁸³ Similarly, the 5-trifluoromethyl-3-phenylisoxazole **283** is obtained (19%) by the cycloaddition reaction of benzonitrile oxide with 3,3,3-trifluoropropyne.¹⁶⁹ Other examples of cycloaddition reactions of aliphatic or aromatic nitrile oxides with fluorinated monosubstituted alkenes (to yield Δ^2 -isoxazolines) or alkynes are reported.¹⁸⁴

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

The cycloaddition of acetonitrile oxide to tributyl(3,3,3-trifluoro-1-propynyl)stannane 165 produced the corresponding trifluoromethylated tributylstannyl-isoxazoles 328 and 329 as an unresolved mixture (86:14 ratio) in 77% combined yield (*Scheme 61*).^{98a} Cross-coupling arylation of this mixture into separable 5-aryl substituted (from 328) and 4-aryl substituted (from 329) isoxazoles can be accomplished.^{98a} Perfluoroalkylated isoxazoles from the reaction of benzalaldoxime and fluorinated alkynes in the two-phase medium CHCl₃/NaOCl_(a0) are also reported.¹⁸⁵

The 5-perfluoroalkyl isoxazoles **332** are regiospecifically prepared from the reaction of nitrile oxides (generated from the reaction of nitroalkanes with TEA/POCl₃) with (Z)-3-perfluoroalkyl-3-pyrrolidinoacrylates **330** (*Scheme 62*).¹⁸⁶ In this case, the regiochemistry is governed by the pyrrolidine group which will also act as a leaving group in the final step. Although the observed conversion is not excellent (35-60%, depending on the R_F group), isolated yields, based on the conversions, are high (69-92%).¹⁸⁶

Similarly to what is observed in the pyrazole series, β -ketoesters and β -diketones can also participate in cycloadditions with nitrile oxides. For example, the reaction of hydroximoyl chlorides with fluorinated β -ketoesters **177a** or β -diketones **177b** in the presence of triethylamine yielded 5-perfluoroalkylisoxazoles **333**. The reaction involved a cycloaddition of the *in situ* formed nitrile oxide with the enolic form of the dicarbonyl compound, followed by spontaneous dehydration (*Scheme 63*).^{102,187} In the case of other fluorinated β -diketones, a different

regiochemistry for the cyloaddition may result, depending on the prevailing enolate species present in the reaction medium.^{102,187}

Some cycloaddition reactions where fluorinated nitrile oxides have been used as 1,3dipolar reagents have also been reported. For example, trifluoroacetonitrile oxide **335** [from hydroximoyl bromide etherate **334** and triethylamine (TEA)] reacts with phenylacetylene to give excellent yields of 5-phenyl-3-(trifluoromethyl)isoxazole **302** (*Scheme 64*).¹⁸⁸ Other examples of

this approach have also been described.^{188,189} Reactions involving polyfluoroalkyl substituted nitrile oxides and β -diketones or β -ketoesters are also reported.^{104a} Trifluoroacetylhydroximoyl bromide etherate reacts with malononitrile in the presence of sodium methoxide to give the expected 5-aminoisoxazole **336** (45%).¹⁹⁰ A similar reaction performed with methyl cyanoacetate produces methyl 5-amino-3-(trifluoromethyl)isoxazole-4-carboxylate **315** (81%).¹⁹¹

e) Miscellaneous

Ring-rearrangement reactions of suitably substituted heterocycles are also reported for the synthesis of fluorinated isoxazoles. An ANRORC-like rearrangement¹⁹² of the oxazole **337** reacting with hydroxylamine leads to the 5-trifluoromethylisoxazoles **339** through the ringopening ring-closure process and subsequent dehydration of first-formed isoxazolines **338** (*Scheme 65*).¹⁹³ For the ureidoisoxazole **342** (38%), an intriguing synthesis is reported¹⁹⁴ through a Boulton-Katritzky rearrangement (BKR)¹⁹⁵ of the enolate form of the 1,2,4-oxadiazole **341** arising from **340** (*Scheme 65*). In this case, the driving-force of the reaction can be recognized in the higher thermodynamic stability of the isoxazole ring compared to the oxadiazole heterocycle.^{195,196}

IV. ISOTHIAZOLES¹⁹⁷

The introduction of fluorine or a fluorinated group in the isothiazole heterocycle is reported both through modification of functional groups (already linked to the heterocyclic ring) and by heterocyclization of fluorinated open-chain precursors. An example of the first approach is the synthesis of 3-fluoro-5-phenyl derivative **344** (41%) from the 3-amino compound **343** through the corresponding diazonium tetrafluoroborate (*Scheme 66*).¹⁹⁸ In turn, trifluoromethylisothiazoles **345** and **346** are reported by fluorination of the corresponding isothiazole carboxylic acids with SF₄/HF as fluorinating reagent.¹⁹⁹

Heterocyclization reactions of fluorinated open-chain intermediates can be considered as the fluorinated counterpart of the general synthetic methods developed for isothiazoles. An interesting example is the thermally-induced intramolecular cyclization of the sulfenyl chloride **349** (which was obtained by chlorination of the *E/Z* isomers of the sulfide **348**)²⁰⁰ into the 5fluoro-4-(trifluoromethyl)isothiazole **350** (54%) (*Scheme 67*).²⁰¹ This reaction can be considered to belong to the general oxidative cyclization of β -mercaptoacrylonitriles.^{197b,202}

3-Trifluoromethylisothiazoles are obtained (in low yields) by a 1,3-dipolar cycloaddition of trifluoroacetonitrile *N*-sulfide **352** (which is formed by thermal elimination of HF from iminosulfur difluoride **351**) with activated acetylenes such as dimethyl acetylendicarboxylate or methyl propiolate (*Scheme 68*). In the latter case, a mixture of two regioisomers **355** and **356** (in 1:5 ratio) was obtained.²⁰³

The synthesis of 4,5-dicyano-3-trifluoromethylisothiazole **357** has been reported in a patent but experimental details are not available.²⁰⁴ In turn, the dicyano compound **357** can be selectively transformed into the ester **358**, a useful precursor for introducing the trifluoromethyliated isothiazole moiety toward target molecules.²⁰⁴ The synthesis of a series of 3-trifluoromethylisothiazoles **361** from oxidative cyclization of aminoacrylic acid thioamides **360** (*Scheme 69*), and their use as pesticides and herbicides, has been also reported in a patent.²⁰⁵

The formation of 5-trifluoromethylisothiazole **363** (56%) is claimed from the reaction of β -chloro- β -trifluoromethylvinylaldehyde **106b** with ammonium thiocyanate (NH₄SCN) (*Scheme 70*).⁷⁴ Although no suggestions are discussed on the mechanism, one might assume that the reaction involves the cyclization of intermediates such as **362**. Similarly, the formation of *bis*(isothiazole) **364** from the corresponding precursor **109** is reported (48%).⁷⁴ The synthesis of 5-trifluoromethylisothiazoles **365** as herbicides is also patented.²⁰⁶

V. OXAZOLES²⁰⁷

1. Ring-fluorinated Oxazoles

Ring-fluorinated oxazoles are prepared both by direct fluorination and by substitution reaction with KF. To the best of our knowledge, there is no report in the literature about the introduction of fluorine onto the oxazole ring *via* diazonium salts. The 4-fluoro-2,5-diaryloxazoles **367**, cited in a recent patent²⁰⁸ as components in liquid crystalline mixtures, are synthesized

by direct fluorination of the corresponding 2,5-diaryloxazoles (*Scheme* 71) with the "N-F" reagent "F-TEDA-BF₄"¹⁶¹ (see *Scheme* 47). The same patent reports also 5-fluoro-2,4-disubstituted oxazoles, but no experimental details are mentioned for their preparation.²⁰⁸ The synthesis

of 2-fluoro-4,5-diphenyloxazole **369** (56%), which is used in the derivatization of amino acids and thiols for fluorescence and chemiluminescence analyses, is reported from 2-chloro derivative **368** through the displacement of chlorine with KF in the presence of 18-crown-6/acetonitrile complex (*Scheme 71*).²⁰⁹

The electrochemical fluorination of the oxazole ring has been reported for some 2alkylthio substituted substrates **370**: fluorination of 4-methyloxazoles **370a** produced the corresponding 4,5-difluoro-4-methyl-2-oxazolines **371a** (50-63% isolated yields) (*Scheme* 72);²¹⁰ on the other hand, fluorination of the 4-carboxymethyloxazole **370b** yielded a mixture of the 4,5difluoro-2-oxazoline **371b** (51%) and the 2,5-difluoro-3-oxazoline **372** (18%).²¹⁰ The suggested

mechanism for this anodic fluorination implies an initial one-electron oxidation of the sulfide generating a radical cation (at the sulfur atom) from which different species, leading to final products, originate.²¹⁰ (See also the electrochemical fluorination of similar substrates in the thiazole series).

A general way to obtain 5-fluorooxazoles **376** considers cyclodefluorination of fluorinated *N*-acylimines **373**.¹¹⁶ This type of cyclization, also observed in the imidazole and thiazole series, is typically achieved in the presence of $SnCl_2$ and proceeds through intermediates of the type **374** and **375** (*Scheme 73*).¹¹⁶ This methodology has also been exploited for the synthesis of fluorinated *bis*(oxazole) **378**^{116d,211} used for the construction of poly(aryl-ether-oxazole)s with trifluoromethyl side-groups.²¹² Similar procedures, including an interesting example of ultrasound-induced cyclization in the presence of Zn, have also been reported^{213,214} and perfluorinated oxazoles **381** (27-60%) have been prepared by heating perfluoroacylimines **379** with zinc in dioxane,²¹⁵ or in the presence of a monovalent copper salt catalyst (CuCl, CuBr) and dicyclohexyl-18-crown-6.²¹⁶ A single electron-transfer step and the formation of the imidate **380** has been suggested (*Scheme 73*).²¹⁶

Scheme 73

The 5-fluoro-4-trifluoromethyloxazoles **376** have been used to introduce a trifluoromethyl oxazole moiety on to several nucleophiles by exploiting the reactivity of the C(5)fluoro moiety towards nucleophilic substitution.²¹⁷ Similar fluorine-displacement reactions have also been reported in the case of perfluorinated oxazoles **381**.^{216b} [An interesting reactivity is reported for the nucleophilic substitution of 5-fluoro-4-trifluoromethyloxazole **376** (Ar = Ph) with benzylic or β , γ -unsaturated alcohols in the presence of a base. The initially formed benzyl or allyl ether undergoes rearrangement into 4-benzyl- (or allyl-) oxazolin-5-ones which are useful precursors of trifluoromethylated open-chain products].²¹⁸

2. Fluoroalkylated Oxazoles

The direct introduction of a polyfluoroalkyl group onto C(4) of the oxazole ring is reported for the 5-ethoxy-2-phenyloxazole **382** using a polyfluoroalkyl iodide in the presence of sodium dithionite $(Na_2S_2O_4)$ (*Scheme 74*).²¹⁹ It is noteworhy that the resulting polyfluoroalkylated oxazole **383** is used as an intermediate for the synthesis of polyfluoroalkyl glycines **384** through acid hydrolysis.²¹⁹ A perfluoroalkylation of substituted oxazoles using perfluoroacylper-oxides is patented, but no experimental details are available.²²⁰

Generally, fluoroalkyl oxazoles are obtained by heterocyclization reactions of fluorinated open-chain precursors. A simple [3+2] cycloaddition of acylcarbenes with nitriles provides

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

a general method for the synthesis of oxazoles (*Scheme 75*). In this context, fluorinated oxazoles **386** are prepared by irradiation of fluorinated α -diazo-carbonyl compounds **387** in acetonitrile.²²¹ These were also obtained through a diazo transfer reaction between ethyl fluoroalkylacetoacetate **388** and perfluoroalkanesulfonyl azide or tosyl azide (TsN₃).²²² A different

approach providing a series of 5-fluoroalkyl substituted oxazoles **389**, in fair to good yields, considers the rhodium acetate mediated cycloaddition between nitriles and α -diazo carbonyl compounds **387**.²²² A similar reaction had been reported for the synthesis of 4-trifluoromethyl-5-ethoxyoxazoles **392** (82-90%) (*Scheme 75*).²²³ By using ethyl cyanoformate, the reaction produces the oxazole **392** (R = COOEt), from which hydrolysis and decarboxylation finally lead to the oxazole **392** (R = H).^{223b}

A patented synthesis of 2-difluoromethyl-4,5-diaryloxazoles **395**, useful for the preparation of cyclooxygenase inhibitors, is realized from α -aminoketones **393** (*Scheme 76*).²²⁴

The 5-amino-2-perfluoroalkyloxazoles **397** have been reported in a series of patents on the preparation of insecticidal fluorinated aryl pyrroles. The reaction involves the acid catalyzed heterocyclization of a perfluoroacylamino nitriles **396** precursor in the presence of various reagents such as trifluoroacetic acid, trifluoromethanesulfonic acid (yielding the corresponding oxazol-5-yl ammonium salts), or acyl chlorides (yielding acylamino derivatives). The obtained oxazoles are then used for the preparation of perfluoroalkyl pyrroles through a cycloaddition reaction with activated olefins (such as **399**) performed in DMF or in MeCN in the presence of triethylamine (TEA).²²⁵ An example of this procedure is illustrated for representative perfluoroalkylpyrrole 400 (*Scheme* 77).^{225b} In this context, it is worth mentioning that perfluoroalkanoylaminonitriles 396 have also been cyclized into the corresponding 2-perfluoroalkyloxazolin-5ones 402 in aqueous acid conditions.²²⁶ These compounds can also be obtained through the general methodology involving the heterocyclization of α -aminoacids 401 (or their derivatives) with perfluoroacylating reagents.²²⁷

Kawase and coworkers, reported the synthesis of 5-trifluoromethyloxazoles **404** by the reaction of *N*-acylprolines **403** with trifluoroacetic anhydride in the presence of pyridine (*Scheme 78*).²²⁸ The process is explained through a Dakin-West²²⁹ reaction involving mesoionic 1,3-oxazolin-5-olates **405**. The reaction can also be performed on *N*-acyl-*N*-benzyl- α -amino acids **408** by treatment with trifluoroacetic or perfluorocarboxylic anhydride in the presence of pyridine *via* the initially formed mesoionic intermediates **409** to afford high yields of 5-trifluoromethyl- or 5-perfluoroalkyloxazoles **410**.^{228b,230} The 5-pentafluoroethyloxazole **413** (49%) is obtained by dehydration of α -benzoylaminoketone **412**, which in its turn, is obtained from *N*-benzoylvaline **411** through a Dakin-West reaction as the key-step for the introduction of the fluoroalkyl group.²³¹

A synthetic strategy, related to the one used for 4-(4'-pyridyl)-oxazoles,²³² is applied for the synthesis of a series of 4,4'-*bis*(pyridyl)-5,5'-*bis*(perfluoroalkyl)-2,2'-*bis*(oxazole)s **415**.²³³ Acylation of 4-aminomethylpyridine with different bidentate acylating reagents lead to a series of *N*,*N*-*bis*(4-pyridylmethylen)diamides **414** with different alkyl or aryl spacers Z (as indicated for some examples in the *Scheme 79*). Subsequent treatment of diamides **414** with perfluoroalkyl anhydrides in the presence of pyridine produced the *bis*(oxazole)s **415** in poor to excellent yields (20-98%).²³³

The synthesis of 5-hydroxy-5-trifluoromethyl-3-oxazolines **416** (43-67%) is reported through a rather unusual (and unexplained) thermally induced reaction of *N*-*t*-butyl-*N*-methylhy-drazones **251b** adsorbed on wet silica gel (*Scheme 80*).^{234,235} Subsequent treatment of **416** with

Downloaded At: 18:11 26 January 2011

 $POCl_3$ /pyridine produced the 5-trifluoromethyloxazoles **417** in high yields. In this rearrangement, the bulkiness of the *t*-butyl group as well as the wet SiO_2 used is claimed to play a determining role. On the other hand, the same compounds **251b** in refluxing toluene lead to imidazoles **252b**.^{150,152}

Recently, a photoinduced ring-rearrangement reaction leading to 2-trifluoromethyloxazole **419** has been reported. Irradiation of the 3-trifluoromethyl-isoxazole **302** in acetonitrile produces **419** (60%) on a preparative scale (*Scheme 81*).²³⁶ The rearrangement follows the classical *ring contraction-ring expansion* route (well documented in the isoxazole series) involving an azirine species intermediate.¹⁵⁶

VI. THIAZOLES237

1. Ring-fluorinated Thiazoles

Different methodologies are reported for the synthesis of ring-fluorinated thiazoles. Some 4-fluoro-2,5-diarylthiazoles **420** (*Scheme 82*) have been cited in a patent regarding the

properties of liquid-crystalline mixtures, and their synthesis is reported²⁰⁸ through direct fluorination of 2,5-diarylthiazoles with "F-TEDA-BF₄"¹⁶¹ reagent (see *Scheme 47*). The 5-fluoro-2,4diarylthiazoles **421** are also cited, but no experimental information is reported for their preparation.²⁰⁸ Direct fluorination by using the above reagent in DMF has also been employed for the synthesis of 5-fluoro-2-arylamino derivative **422** (40%) (*Scheme 82*).²³⁸ An interesting annular fluorination occurs in the synthesis of 2-amino-5-fluorothiazole **425**, which is used to introduce the thiazole moiety in various target compounds. The synthetic sequence starts with the protection of the bromothiazole **423** which is then lithiated and fluorinated by using *N*-fluorobenzensulfonimide (*Scheme 82*).²³⁹

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

Besides the direct fluorination leading to 4-fluoro- or 5-fluorothiazoles, fluorodeamination reactions using either diazonium tetrafluoroborate²⁴⁰ or sodium nitrite in poly-HF-pyridine²⁴¹ are reported for the synthesis of 2-fluorothiazoles **427** and **428**, respectively (*Scheme 83*).

Electrochemical fluorination of 2-thiazolyl sulfides **429**, by using TEA-5HF as a fluorine source and a supporting electrolyte, was successfully carried out to provide the corresponding 5-fluorothiazoles **430** (20%) and 2,5,5-trifluorothiazolines **431** (50%) (*Scheme 84*).²⁴² In the case of **429** (R = CN), besides the expected 5-fluoro derivative **430** (R = CN; 20%), the

side-chain monofluorinated thiazole at the CH_2 moiety (60%) was also isolated. The product selectivity depends on the structure of the side-chain substituent, which affects the redox potential of the substrate. As observed in the oxazole series (where only polyfluorinated oxazolines were formed)²¹⁰ the reaction is explained by a conventional one-electron oxidation of the starting sulfide to generate a radical-cation (at the sulfur atom) from which different species, leading to the final products, will arise.²⁴²

Ring-fluorinated thiazoles can also be prepared by aromatic nucleophilic substitution (*Scheme 85*). In a series of polyhalogenated thiazoles, e.g. **432** (X = Cl), fluorination with potassium fluoride in tetramethylenesulfone at 130°C yielded 2-fluorothiazoles **433**.²⁴³ Other examples

are the formation of 2-fluorothylthiazole **435** (38%) from reaction of the corresponding 2-chloro compound **434** with KF in the presence of 18-crown-6 in acetonitrile,²⁴⁴ and the fluorodenitration

of 2-nitrothiazole **436** into the 2-fluorothiazole **437** (20%) by treatment with KF in *N*-methyl-2pyrrolidone at 110°C.²⁴⁵ A series of patented polyfluorinated thiazoles originate through transhalogenation reactions of the corresponding polychlorinated precursor using HF (fluorination at the side-chain) or KF (annular fluorination).²⁴⁶

Ring-fluorinated thiazoles are also acquired through heterocyclization reactions of suitable open-chain precursors. As anticipated from the imidazole and oxazole series, fluorinated *N*thioacylimines **438** have been successfully used for the synthesis of 5-fluoro-4-trifluoromethylthiazoles **439** (*Scheme 86*).¹¹⁶ This methodology has been extended to the synthesis of fluorinated

bis(thiazole)s **440** and **442**, which are used for the construction of poly(arylether-thiazole)s containing trifluoromethyl pendants.²⁴⁷ A representative synthesis of the monomer **442** involves the cyclization of **441** arising from the reaction of terephthalic acid dithioamide and hexafluoroacetone (*Scheme 86*).

2. Fluoroalkylated Thiazoles

Dibromodifluoromethane reacts with the thiazole **443** (in the presence of *n*-BuLi) yielding the corresponding 5-(bromodifluoromethyl)thiazole **444** (80%).²⁴⁸ In turn, compound **444** was converted into the 2-amino-4,5-*bis*(trifluoromethyl)thiazole **445** (53%) by using tetrabutylammonium fluoride followed by final hydrolysis (*Scheme 87*).²⁴⁸ As for the direct introduction of perfluoroalkyl groups on the thiazole ring, a historic example describes the reaction of

Scheme 87

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

2,4-dimethylthiazole **446** with perfluoropropyl iodide in the presence of sodium acetate at 190-200°C to produce the corresponding 5-perfluoropropyl derivative **447** (55%).²⁴⁹ A later patent reports the perfluoroalkylation of thiazoles with perfluorinated acylperoxides; however, no experimental details are available.²²⁰ Similarly to other azoles, trifluoromethylthiazoles are obtained from the corresponding thiazolecarboxylic acids by treatment with SF₄/HF as a fluorinating reagent.²⁵⁰ Fluorination of 2-carboxy-4,5-dichlorothiazole **448** with sulfur tetrafluoride mainly produced the 2-trifluoromethyl compound **449** (X = Cl) (90%), together with amounts of the 2-trifluoromethyl-4-fluoro derivative **449** (X = F) (*Scheme 87*).²⁴³

Besides the examples above, the synthesis of perfluoroalkylthiazoles is generally realized by heterocyclization reactions of perfluorinated open-chain precursors through the usual synthetic methodologies for the thiazole ring.²³⁷ In this context, the most widely used methodology is represented by the Hantzsch synthesis, which is the cyclization of α -halocarbonyl compounds with a reactant containing the N-C-S fragment. Commonly used reagents for this purpose are thioureas or thioamides, the latter being occasionally prepared *in situ* by sulfuration of the corresponding amides. Several examples of this approach have been reported ^{240b,248,251} after the historic synthesis of 2-amino-4-trifluoromethylthiazole **452** (R¹ = R² = H) and its 5carboxyethyl derivative **452** (R¹ = COOEt; R² = H) (*Scheme* 88).²⁵²

Interestingly, in the case of the reaction of the bromoketone **451** (X = Br; R¹ = H) with thioamides, 4-hydroxy-4-trifluoromethylthiazolines **450** were isolated. As already observed in the pyrazole and isoxazole series, the stability of these thiazoline derivatives is due to the electronic effect of the trifluoromethyl group linked to an sp³ carbon atom. In turn, thiazolines **450** were transformed into thiazoles **453** by refluxing in toluene in the presence of *p*-toluenesulfonic acid.²⁵³ Improved procedures for the high-yield synthesis of 4-trifluoromethyl-5-carboxyethylthiazole **454** from the reaction of ethyl 2-chloro-4,4,4-trifluoroacetylacetate **451** (X = Cl; R¹ = COOEt) with thioacetamide in MeCN have been reported.²⁵⁴ Recently, the synthesis of 2-arylamino-4-trifluoromethylthiazoles **455** (85-97%) from the reaction of arylthioureas with the trifluoromethylated chlorocarbonyl compound **451** (X = Cl; R¹ = COOEt) has been reported for

the preparation of pharmaceutically interesting molecules.²⁵⁵ Similarly, cyclocondensation of the bromo- β -diketone **451** (X = Br; R¹ = COPh) with thiourea yields 2-amino-5-benzoyl-4-(trifluo-romethyl)thiazole (84%), which can be diazotized and coupled with phenolic substrates.²⁵⁶

Syntheses involving fluorinated thioamides reacting with α -halocarboyl compounds are also reported (*Scheme 89*). An example is represented by the preparation of 2-trifluoromethyl compounds **457** (28-34%) where the thioamide is prepared *in situ* from trifluoroacetamide and P_2S_5 .²⁵⁷ Similarly, the reaction of trifluorothioacetamide with ethyl α -bromo-propionate gave the 2-trifluoromethyl-4-hydroxy-5-methylthiazole **458**, which is a useful intermediate for the preparation of thiazole derivatives with fungicidal activity.²⁵⁸ In this context, the synthesis of 2,4-*bis*(trifluoromethyl)-5-carbethoxythiazole **459** (precursor for agricultural fungicides) from the reaction of trifluorothioacetamide with the trifluoromethylated chlorocarbonyl compound **451** (X = Cl; R¹ = COOEt) has also been reported.²⁵⁹

Trifluoromethylepoxysulfones **461** and **464** are used as α -haloketone equivalents in the synthesis of trifluoromethylthiazoles. The reaction of **461** [prepared by oxidation of the vinylthioether **460** with *m*-chloroperbenzoic acid (*m*-CPBA)] with thioureas gives the 4-trifluoromethylthiazoles **462** (91-99%) (*Scheme 90*, where Z indicates the sulfurated nucleophile).²⁶⁰ On the other hand, the reaction of the oxirane **464** (prepared by oxidation of the vinylsulfone **463** with 'BuOOH in the presence of BuLi) with the same thioureas in DMF produces the 5-trifluoromethylthiazole regioisomers **465** (30-38%).²⁶⁰

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

A thiazole cyclization occurs in the reaction of fluorinated 3-amino-acrylates **466** (easily accessible from ethyl acetylacetate and perfluoronitriles) with chlorocarbonylsulfenyl chloride, leading to 4-perfluoroalkyl-2-oxo-5-thiazoles **467** (41-55%) (*Scheme 91*). Their subsequent reaction with POCl₃ produced 4-perfluoroalkyl-2-chlorothiazoles **468** (69-92%).²⁴⁴ [Note that the reactivity of functional groups at C(2) and C(5) in compounds **468** allows the introduction of the fluorinated thiazole moiety into target molecules]. A recent application of this thiazole cyclization has been reported.²⁶¹ This synthesis of fluoroalkyl thiazole derivatives has also been object of several patents.²⁶²

On the basis of the synthetic approach already described in the oxazole series (see *Scheme 79*), the synthesis of 4,4'-*bis*(pyridyl)-5,5'-*bis*(perfluoroalkyl)-2,2'-*bis*(thiazole)s having the general formula **470** is reported to take place (in modest yields) from symmetrical dithioamides **469** (prepared by sulfuration of the corresponding diamides with Lawesson's reagent) by reaction with perfluoroalkanoic acid anhydrides (*Scheme 92*).²³³

The formation of 5-trifluoromethylthiazoles **471** is claimed²³⁵ to occur by sulfuration of the oxazolines **416** obtained from thermally induced cyclization of *t*-butyl-(methyl)hydrazones **251b**. The same trifluoromethylthiazoles **471** (18-36%) or 5-hydroxy-5-trifluoromethylthiazolines **472** (23-59%) were directly obtained from hydrazones **251b** and sulfurating reagents in a one-pot procedure (*Scheme 93*).^{152,235,263} In turn, thiazolines **472** can easily be dehydrated into thiazoles **471**. Finally, a thiazole cyclization takes place by reaction of perfluorinated pentene-3-thiocyanate **473** with ammonia, yielding fluorinated 2-aminothiazoline **474** as the more stable *E*-isomer (*Scheme 93*).²⁶⁴

VII. CONCLUDING REMARKS

The synthesis of fluorinated five-membered heterocycles containing two or more heteroatoms represents a challenging research area, especially when the achievement of a particular target is essential for the development of new materials with specific properties. This second review although not exhaustive, satisfactorily completes the original goals of summarizing and reorganizing the last two decades of literature on the synthesis of fluorinated azoles. It is hoped that these two reviews will be helpful in the planning of straightforward synthetic strategies for specific heterocyclic targets.

Acknowledgment.- The authors thank the University of Palermo for financial support.

REFERENCES

- See, for example: (a) M. Hudlicky, Chemistry of Organic Fluorine Compounds, 2nd ed., Ellis Horwood, Chichester, 1976; (b) R. Filler, Organofluorine Chemicals and their Industrial Applications, R. E. Banks, ed, Ellis Horwood, Chichester, 1979; (c) R. Filler, and Y. Kobayashi, Biomedical Aspects of Fluorine Chemistry, Kodansha & Elsevier Biomedical, Tokyo, 1982; (d) J. T. Welch, Tetrahedron, 43, 3123 (1987). (e) D. W. Reynolds, P. E. Cassidy, C. G. Johnson, and M. L. Cameron, J. Org. Chem., 55, 4448 (1990). (f) R. Filler, Y. Kobayashi, and L. M. Yagupolskii, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993; (g) M. Hudlicky, and A. E. Pavlath, eds, Chemistry of Organic Fluorine Compounds II. A Critical Review., ACS Monograph 187, American Chemical Society, Washington, DC, 1995.
- (a) P. Bouchet, C. Coquelet, and J. Elguero, *Bull. Soc. Chim. Fr.*, 171 (1977). (b) R. D. Chambers and C. R. Sargent, *Adv. Heterocycl. Chem*, 28, 1 (1981). (c) M. J. Silvester, *Aldrichim. Acta*, 24, 131 (1991). (d) M. J. Silvester, *Adv. Heterocycl. Chem.*, 59, 1 (1994). (e) K. Burger, U. Wucherpfennig, and E. Brunner, *Adv. Heterocycl. Chem.*, 60, 1 (1994). (f)

THE SYNTHESIS OF FLUORINATED HETEROAROMATIC COMPOUNDS

G. G. Furin, *Targets in Heterocyclic Systems*, ed. by O. A. Attanasi and D. Spinelli, Società Chimica Italiana; Roma, 1998; Vol. 2, p 335. (g) A. W. Erian, *J. Heterocycl. Chem.*, **38**, 793 (2001). (h) S. Z. Zhu, Y. L. Wang, W. M. Peng, L. P. Song, and G. F. Jin, *Current Organic Chemistry*, **6**, 1057 (2002).

- 3. A. Pace, S. Buscemi, and N. Vivona, Org. Prep. Proc. Int., 37, 447 (2005).
- 4. J. Elguero, A. Fruchier, N. Jagerovic, and A. Werner, Org. Prep. Proc. Int., 27, 33 (1995).
- For general aspects of the chemistry of pyrazole heterocycle, see: (a) A. N. Kost and I. I. Grandberg, Adv. Heterocycl. Chem., 6, 347 (1966). (b) J. Elguero, in Comprehensive Heterocyclic Chemistry I, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, vol 5, p. 167 (1984). (c) J. Elguero, in Comprehensive Heterocyclic Chemistry II, ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Elsevier, vol 3, p. 1 (1996). (d) K. Kirschke, in Methoden Org. Chem. (Houben-Weil), ed by E. Schaumann, George Thieme Verlag, Stuttgart, 1994, vol. III/2, p. 399.
- 6. J. Garcia and J. Vilarrasa, Heterocycles, 27, 1803 (1988).
- 7. R. M. Claramunt, I. Alkorta, and J. Elguero, Heterocycles, 51, 355 (1999).
- (a) K. Makino and H. Yoshioka, J. Fluorine Chem., 39, 435 (1988). (b) K. Makino and H. Yoshioka, JP Patent, 01029364 (1989); Chem. Abstr., 111, 7802 (1989).
- E. I. Kvasyuk, I. A. Mikhailopulo, and N. E. Pupeiko, Zh. Org. Khim, 19, 462 (1983); Chem. Abstr., 98, 179279 (1983).
- (a) C. Y. Shiue and A. P. Wolf, J. Labelled Compd. Radiopharm., 18, 1059 (1981); Chem. Abstr. 96, 35154 (1982). (b) M. Diksic and P. Di Raddo, Tetrahedron Lett., 25, 4885 (1984).
- K. Morimoto, M. Oonari, H. Furusawa, T. Terachi, T. Nawamaki, S. Watanabe, K. Ishikawa, K. Shiojima, K. Nakahira, and C. Kawaguchi, JP Patent, 07252229 (1995); *Chem. Abstr.*, **124**, 146149 (1996).
- 12. J. Vilarrasa, C. Galvez, and M. Calafel, Anal. Quim., 631 (1975).
- 13. F. Fabra, J. Vilarrasa, and J. Coll, J. Heterocycl. Chem., 15, 1447 (1978).
- K. E. Arndt and R. W. McCormik, US patent, 4969946 (1990); Chem. Abstr. 114, 163105 (1991).
- 15. F. Fabra, E. Fos, and J. Vilarrasa, Tetrahedron Lett., 3179 (1979).
- (a) C. L. Bumgardner and J. C. Sloop, *J. Fluorine Chem.*, 56, 141 (1992. (b) J. C. Sloop, C. L. Bumgardner, and W. D. Loehle, *J. Fluorine Chem.* 118, 135 (2002).
- T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G.

D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen, Y. Y. Zhang, and P. C. Isakson, *J. Med. Chem.*, **40**, 1347 (1997).

- (a) C. Reichardt and K. Halbritter, *Liebigs Ann. Chem.* 470 (1975). (b) H. Molines and C. Wakselman, *J. Org. Chem.*, 54, 5618 (1989).
- 19. X. Shi, T. Ishihara, H. Yamanaka, and J. T. Gupton, Tetrahedron Lett., 36, 1527 (1995).
- 20. K. Funabiki, T. Ohtsuki, T. Ishihara, and H. Yamanaka, Chem. Lett., 239 (1995).
- 21. Q. Zhang and L. Lu, Tetrahedron Lett., 41, 8545 (2000).
- 22. G.-Q. Shi, Q. Wang, and M. Schlosser, Tetrahedron, 52, 4403 (1996).
- J. Ichikawa, M. Kobayashi, Y. Noda, N. Yokota, K. Amano, and T. Minami, *J. Org. Chem.*, 61, 2763 (1996).
- 24. N. K. Park, B. T. Kim, S. S. Moon, S. L. Jeon, and I. H. Jeong, Tetrahedron, 60, 7943 (2004).
- K.-W. Chi, S.-J. Kim, T.-H. Park, Y. V. Gatilov, I. Yu. Bagryanskaya, and G. G. Furin, J. Fluorine Chem., 98, 29 (1999); see also references cited therein for the synthesis of perfluoropyrazoles from perfluoroolefins.
- 26. (a) I. Ikeda, Y. Kogame, and M. Okahara, J. Org. Chem., 50, 3640 (1985). (b) M. Okahara, I. Ikeda, and F. Nemoto, JP Patent, 62077371 (1987); Chem. Abstr., 107, 96713 (1987). (c) M. Okahara, I. Ikeda, and F. Nemoto, JP Patent, 62077370 (1987); Chem. Abstr., 107, 134301 (1987). (d) L. F. Lee, and Y. L. L. Sing, EP Patent, 278944 (1988); Chem Abstr., 109, 230818 (1988).
- J.-P. Bouillon. B. Didier, B. Dondy, P. Doussot, R. Plantier-Royon, and C. Portella, *Eur. J.* Org. Chem., 187 (2001).
- 28. B. Dondy, P. Doussot, and C. Portella, Tetrahedron Lett., 35, 409 (1994).
- 29. T. Ishihara, Y. Okada, M. Kuroboshi, T. Shinozaki, and T. Ando, Chem. Lett., 819 (1988).
- G. B. Blackwell, R. N. Haszeldine, and D. R. Taylor, J. Chem. Soc., Perkin Trans. 1, 2207 (1982).
- T. Shimaoka, H. Oikawa, H. Sonoda, T. Fukumura, K. Goto, J. Naruse, H. Hayashi, and T. Yasutake, JP Patent, 2001192369 (2001); *Chem. Abstr.*, 135, 92630 (2001).
- J. Stetter, O. Schallner, M. Lindig, U. Jensen-Korte, B. Baasner, B. Becker, B. Homeyer, W. Behrenz, and W. Stendel, DE Patent, 3609423 (1987); *Chem. Abstr.*, 108, 6006b (1987).
- 33. K. Morimoto, K. Makino, S. Yamamoto, and G. Sakata, J. Heterocycl. Chem., 27, 807 (1990).
- 34. A. R. Katritzky, D. L. Ostercamp, and T. I. Yousaf, Tetrahedron, 43, 5171 (1987).

- K. N. Zelenin and S. I. Yakimovitch, *Targets in Heterocyclic Systems*, ed. by O. A. Attanasi and D. Spinelli, Società Chimica Italiana, Roma, 1998, vol 2, p. 207.
- 36. J. Elguero and G. I. Yranzo, J. Chem. Research (S), 120, 1990).
- K. N. Zelenin, V. V. Alekseyev, A. R. Tygysheva, and S. I. Yakimovitch, *Tetrahedron*, 51, 11251 (1995).
- S. P. Singh, D. Kumar, H. Batra, R. Naithani, I. Rozas, and J. Elguero, *Can. J. Chem.*, 78, 1109 (2000).
- 39. S. P. Singh, D. Kumar, B. G. Jones, and M. D. Threadgill, J. Fluorine Chem., 94, 199 (1999).
- 40. J.-L. Peglion, R.-E. Pastor, and A.-R. Cambon, Bull. Soc. Chim. France, II-309 (1980).
- J. C. Sloop, C. L. Bumgardner, G. Washinton, W. D. Loehle, S. S. Sankar, and A. B. Lewis, J. Fluorine Chem., 127, 780 (2006).
- M. L. Quan, P. Y. S. Lam, Q. Han, D. J. P. Pinto, M. Y. He, R. Li, C. D. Ellis, C. G. Clark, C. A. Teleha, J.-H. Sun, R. S. Alexander, S. Bai, J. M. Luettgen, R. M. Knabb, P. C. Wong, and R. R. Wexler, *J. Med. Chem.*, 48, 1729 (2005).
- 43. J. W. Lyga and R. M. Patera, J. Heterocycl. Chem., 27, 919 (1990).
- 44. (a) S. P. Singh, J. K. Kapoor, D. Kumar, and M. D. Threadgill, *J. Fluorine Chem.*, 83, 73 (1997). (b) A. B. Desinova, T. V. Glukhareva, G. P. Andronnikova, V. S. Mokrushin, W. Dehaen, I. Luyten, V. Y. Sosnovskikh, L. Van Meervelt, and V. A. Bakulev, *J. Chem. Research (S)*, 12 (2001).
- 45. S. P. Singh, V. Kumar, R. Aggarwal, and J. Elguero, J. Heterocycl. Chem., 43, 1003 (2006).
- 46. L. P. Song and S. Z. Zhu, J. Fluorine Chem., 111, 201 (2001).
- V. Sareen and S. Jain, J. Fluorine Chem., 63, 265 (1993). Note that in this paper, a discrepancy exists between the title/abstract in one hand and the reported reaction scheme in the text, in the other.
- 48. P. P. K. Claire, P. L. Coe, C. J. Jones, and J. A. McCleverty, J. Fluorine Chem., 51, 283 (1991).
- 49. M. D. Threadgill, A. K. Heer, and B. J. Jones, J. Fluorine Chem., 65, 23 (1993).
- O. G. Khudina, E. V. Shchegol'kov, Ya. V. Burgart, M. I. Kodess, O. N. Kazheva, A. N. Chekhlov, G. V. Shilov, O. A. Dyachenko, V. I. Saloutin, and O. N. Chupakhin, J. Fluorine Chem., 126, 1230 (2005).
- (a) O. V. Zakharova, V. M. Vlasov, and G. G. Yakobson, *Zhurn. Org. Khim.* 15, 2169 (1979); *Chem. Abstr.*, 92, 94197 (1980). (b) K. I. Pashkevic, V. I. Saloutin, A. N. Fomin, V. V. Berenblit, V. S. Plashkin, and I. Ya. Postovskii, *Zhurn. Vses. Khim. Obshch.*, 26, 105 (1981); *Chem. Abstr.*, 94, 192214 (1981).

- L. F. Lee, F. M. Schleppnik, R. W. Schneider, and D. H. Campbell, J. Heterocycl. Chem. 27, 243 (1990).
- (a) V. I. Saloutin, A. N. Formin, and K. I. Pashkevich, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 144 (1985); *Chem. Abstr.*, **102**, 184699 (1985). (b) V. Dinoiu, *Revista de Chimie (Bucharest)*, **56**, 649 (2005); *Chem. Abstr.*, 845206 (2005).
- K. I. Pashkevich, V. M. Krokhalev, and V. I. Saloutin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1367 (1988); *Chem. Abstr.*, **110**, 114750 (1989).
- 55. Y. V. Burgart, A. S. Fokin, O. G. Kuzueva, O. N. Chupakhin, and V. I. Saloutin, J. Fluorine Chem., 92, 101 (1998).
- P. N. Kondrat'ev, Z. E. Skryabina, V. I. Saloutin, and L. M. Khalilov, *Russ. J. Org. Chem.*, 28, 1085 (1992).
- V. I. Saloutin, Z. E. Skryabina, P. N. Kondrat'ev, and S. G. Perevalov, *Russ. J. Org. Chem.*, 31, 236 (1995).
- 58. V. I. Saloutin and S. G. Perevalov, J. Fluorine Chem., 96, 87 (1999).
- 59. V. I. Filyakova, N. S. Karpenko, O. A. Kuznetsova, and K. I. Pashkevich, Russ. J. Org. Chem., 34, 381 (1998).
- 60. V. I. Saloutin, Y. V. Burgart, C. O. Kappe, and O. N. Chupakhin, *Heterocycles*, 52, 1411 (2000).
- H. Yamanaka, T. Takekawa, K. Morita, T. Ishihara, and J. T. Gupton, *Tetrahedron Lett.*, 37, 1829 (1996).
- 62. M. E. F. Braibante, G. Clar, and M. A. P. Martins, J. Heterocycl. Chem., 30, 1159 (1993).
- 63. L.-p. Song, Q.-l. Chu, and S-z. Zhu, J. Fluorine Chem., 107, 107 (2001).
- H. G. Bonacorso, A. D. Wastowski, N. Zanatta, M. A. P. Martins, and J. A. Naue, J. Fluorine Chem., 92, 23 (1998).
- 65. H. G. Bonacorso, A. D. Wastowsky, N.m Zanatta, and M. A. P. Martins, *Synthetic Commun.*, **30**, 1457 (2002).
- (a) J. W. Pavlik, T. I. Na Ayudhya, and S. Tantayanon, J. Heterocycl. Chem., 39, 1025 (2002).
 (b) M. Schlosser, J. –N. Volle, F. Leroux, and K. Schenk, Eur. J. Org. Chem., 2913 (2002).
- 67. J. W. Pavlik, T. I. Na Ayudhya, and S. Tantayanon, J. Heterocycl. Chem., 40, 1087 (2003).
- M. A. P. Martins, C. M. P. Pereira, N. E. K. Zimmermann, W. Cunico, S. Moura, P. Beck, N. Zanatta, and H. G. Bonacorso, J. Fluorine Chem., 123, 261 (2003).

- (a) E. Okada, R. Masuda, and M. Hojo, *Heterocycles*, 34, 791 (1992); (b) M. Soufyane, C. Mirand, and J. Levy, *Tetrahedron Lett.*, 34, 7737 (1993). (c) A. Touzot, M. Soufyane, H. Berber, L. Toupet, and C. Mirand, *J. Fluorine Chem.*, 125, 1299 (2004).
- 70. J. Diab, A. Laurent, and I. Le Drean, J. Fluorine Chem., 84, 145 (1997).
- (a) G. G. Levkovkaya, G. V. Bozhenkov, L. I. Larina, I. T. Evstaf'eva, and A. N. Mirskova, *Russ. J. Org. Chem.*, 37, 644 (2001). (b) G. V. Bozhenkov, Yu. L. Frolov, D. S.-D. Toryashinova, G. G. Levkovskava, and A. N. Mirskova, *Russ. J. Org. Chem.*, 39, 807 (2003).
- 72. J. M. Mellor, S. R. Schofield, and S. R. Korn, Tetrahedron, 53, 17163 (1997).
- 73. J. Diab, A. Laurent, and I. Le Drean, J. Fluorine Chem., 84, 145 (1997).
- 74. D. Greif, U. Eilitz, M. Pulst, D. Riedel, and M. Wecks, J. Fluorine Chem., 94, 91 (1999).
- 75. M. Ohkoshi, M. Yoshida, H. Matsuyama, and M. Iyoda, Tetrahedron Letters, 42, 33 (2001).
- 76. M. Kawase, M. Hirabayashi, H. Koiwai, K. Yamamoto, and H. Miymae, J. Chem. Soc., Chem. Commun., 641 (1998).
- 77. M. Kawase, M. Hirabayashi, S. Saito, and K. Yamamoto, Tetrahedron Lett., 40, 2541 (1999).
- 78. J.-P. Bouillon, C. Ates, Z. Janousek, and H. G. Viehe, Tetrahedron Lett., 34, 5075 (1993).
- B. G. Jones, S. K. Branch, A. S. Thompson, and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 1, 2685 (1996).
- 80. S. Zhu, G. Xu, C. Qin, Q. Chu, and Y. Xu, Monasth. Chem., 130, 671 (1999).
- (a) B. C. Hamper, J. Fluorine Chem., 48, 123 (1990). (b) B. C. Hamper, M. L. Kurtzweil, and J.P. Beck, J. Org. Chem., 57, 5680 (1992).
- 82. R. J. Linderman and K. S. Kirollos, Tetrahedron Lett., 30, 2049 (1989).
- B. G. Jones, S. K. Branch, A. S. Thompson, and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 1, 2685 (1996).
- 84. B. J. Gaede and L. L. McDermott, J. Heterocycl. Chem., 30, 49 (1993).
- 85. J. Fabron, R. Pastor, and A. Cambon, J. Fluorine Chem., 37, 371 (1987).
- 86. X.-Q. Tang and C.-M. Hu, J. Chem. Soc. Perkin Trans. 1, 2161 (1994).
- (a) X.-Q. Tang and C.-M. Hu. J. Chem. Soc. Perkin Trans. 1, 1039 (1995). (b) Q.-S. Hu, H.-P. Guan, and C.-M. Hu, J. Fluorine Chem., 75, 51 (1995).

- X.-Q. Tang and C.-M. Hu, J. Chem. Soc. Chem. Commun., 631 (1994). (b) H.-P. Guan, X.-Q. Tang, B.-H. Luo, and C.-M. Hu, Synthesis, 1489 (1997).
- 89. X.-Q. Tang and C.-M. Hu, J. Fluorine Chem., 73, 129 (1995).
- 90. H.-B. Yu and W.-Y. Huang, J. Fluorine Chem., 87, 69 (1998).
- 91. P. L. Coe and N. C. Ray, J. Fluorine Chem., 88, 169 (1998).
- 92. Y. Kamitori, M. Hojo, R: Masuda, S. Ohara, K. Kawasaky, and N. Yoshikawa, *Tetrahedron Lett.*, 29, 5281 (1988).
- 93. M. Takahashi and H. Kotajima, Synlett, 353 (1990).
- 94. G. Meazza, G. Zanardi, and P. Piccardi, J. Heterocycl. Chem., 30, 365 (1993).
- 95. (a) B. Jiang, Y.-Y. Xu, and J. Yang, J. Fluorine Chem., 67, 83 (1994). (b) S. Tajammal and A. E. Tipping, J. Fluorine Chem., 47, 45 (1990). (c) L. Sibous and A. E. Tipping, J. Fluorine Chem., 62, 39 (1993).
- 96. Q. S. Hu and C. M. Hu, Chin. Chem. Lett., 8, 673 (1997); Chem. Abstr., 127, 293163 (1997).
- 97. R. D. Chambers and M. Salisbury, J. Fluorine Chem., 104, 239 (2000).
- 98. (a) T. Hanamoto, Y. Hakoshima, and M. Egashira, *Tetrahedron Lett.*, 45, 7573 (2004).
 (b) T. Hanamoto, M. Egashira, K. Ishizuka, H. Furuno, and J. Inanaga, *Tetrahedron*, 62, 6332 (2006).
- 99. J. Zheng, Z. Wang, Y. Shen, J. Fluorine Chem., 61, 17 (1993).
- 100. J. Cyrener, C. Lauterbach, and K. Burger, J. Fluorine Chem., 78, 55 (1996).
- 101. G. Meazza and G. Zanardi, J. Fluorine Chem., 67, 183 (1994).
- 102. P. Bravo, D. Diliddo, and G. Resnati, Tetrahedron, 50, 8827 (1994).
- 103. H. F. Zohdi, J. Chem. Research (S), 82 (1992).
- See, for example: (a) K. Tanaka, M. Kishida, S. Maeno, and K. Mitsuhashi, *Bull. Chem. Soc. Jpn*, **59**, 2631 (1986). (b) K. Tanaka, T. Suzuki, S. Maeno, and K. Mitsuhashi, *Bull. Chem. Soc. Jpn*, **60**, 4480 (1987). (c) H. F. Zohdi, H. Y. Afeefy, and A. O. Abdelhamid, *J. Chem. Research* (*S*), 76 (**1993**).
- 105. For general aspects of the chemistry of Imidazoles, see. (a) M. R. Grimmett, Adv. Heterocycl. Chem., 12, 103 (1970). (b) M. R. Grimmett, Adv. Heterocycl. Chem., 27, 241 (1980).
 (c) M. R. Grimmett, in Comprehensive Heterocyclic Chemistry, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, vol 5, p. 345; *ibid.* p. 373; *ibid.* p. 457 (1984). (c) M. R. Grimmett, in Comprehensive Heterocyclic Chemistry II, ed. by A. R. Katritzky, C. W.

Rees, and E. F. V. Scriven, Elsevier, vol 3, p 77 (1996). (d) K. Ebel, *Methoden Org. Chem.* (*Houben-Weil*), ed by E. Schaumann, George Thieme Verlag, Stuttgart, 1994, vol. E8c, Heteroarenes III/3, p. 1.

- 106. W.-Q. Deng, V. Molinero, and W. A. Goddard, J. Am. Chem. Soc., 126, 15644 (2004).
- See, for example: (a) L. A. Cohen and K. L. Kirk, J. Am. Chem. Soc., 93, 3060 (1971). (b)
 K. L. Kirk and L. A. Cohen, J. Am. Chem. Soc. 95, 4619 (1973). (c) K. L. Kirk and L. A.
 Cohen, J. Org. Chem., 38, 3647 (1973). (d) Y. Takeuchi, K. L. Kirk, and L. A. Cohen, J.
 Org. Chem., 43, 3570 (1978). (e) Y. Takeuchi, K. L. Kirk, and L. A. Cohen, J. Org. Chem.,
 44, 4240 (1979). (f) F. Fabra, C. Galvez, A. Gonzalez, P. Viladoms, and J. Vilarrasa, J.
 Heterocycl. Chem., 15, 1227 (1978).
- 108. K. L. Kirk, W. Nagai, and L. A. Cohen, J. Am. Chem. Soc., 95, 8389 (1973).
- 109. H. Levine-Pinto, B. Bouabdallah, J. L. Morgat, D. Gourdji, P. Fromageot, Biochem. Biophys. Research Commun. 103, 1121 (1981); Chem. Abstr., 96, 143303 (1982).
- 110. B. Dolensky, Y. Takeuchi, L. A. Cohen, and K. L. Kirk, J. Fluorine Chem., 107, 147 (2001).
- 111. K. Takahashi, K. L. Kirk, and L. A. Cohen, J. Org. Chem., 49, 1951 (1984).
- 112. M. R. Bryce, R. D. Chambers, S. T. Mullins, and A. Parkin, Bull. Soc. Chim. Fr., 930 (1986).
- 113. K. K. Laali, M. Tanaka, F. Forohar, M. Cheng, J. C. Fetzer, J. Fluorine Chem., 91, 185 (1998).
- 114. P. G. Apen and P. G. Rasmussen, Heterocycles, 29, 1325 (1989).
- 115. (a) E. C. Coad, J. Kampf, and P. G. Rasmussen, J. Org. Chem., 61, 6666 (1996). (b) E. C. Coad, H. Liu, and P. G. Rasmussen, *Tetrahedron*, 55, 2811 (1999).
- 116. For representative examples on this subject, see: (a) R. Ottlinger, K. Burger, H. Goth, and J. Firl, *Tetrahedron Lett.*, 5003 (1978). (b) K. Burger, R. Ottlinger, H. Goth, and J. Firl, *Chem. Ber.*, 115, 2494 (1982). (c) K. Burger, K. Geith, and D. Hubl, *Synthesis*, 189 (1988). (d) K. Burger, K. Geith, and D. Hubl, *Synthesis*, 199 (1988). (e) K. Burger, K. Geith, and N. Sewald, *J. Fluorine Chem.*, 46, 105 (1990), and references cited therein.
- 117. H. H. Karsh, F. Bienlein, M. Heckel, and O. Steigelmann, Zeithsch. Naturfrsh (B), **50**, 289 (1995); Chem. Abstr., **123**, 33230 (1995).
- 118. B. Dolensky, G. Nam, W.-P. Deng, J. Narayanan, J. Fan, and K. L. Kirk, J. Fluorine Chem., 125, 501 (2004).
- 119. B. Dolensky and K. L. Kirk, Collect. Czech. Chem. Commun. 67, 1335 (2002).
- 120. J. Kollonitsch, S. Marburg, and L. M. Perkins, J. Org. Chem., 44, 771 (1979).

- 121. B. Dolensky and K. L. Kirk, J. Org. Chem., 66, 4687 (2001).
- 122. (a) B. Dolensky and K. L. Kirk, J. Org. Chem., 67, 3468 (2002). (b) B. Dolensky and K. L. Kirk, J. Fluorine Chem., 124, 105 (2003).
- 123. B. Dolensky, J. Narayanan, and K. L. Kirk, J. Fluorine Chem., 123, 95 (2003).
- 124. V. G. Poludnenko, O. B. Didinskaya, and A. F. Pozharakii, Chem. Heterocycl. Compds. (Engl. Transl.), 20, 422 (1984).
- 125. J. W. Lyga and R. M. Patera, J. Fluorine Chem., 92, 141 (1998).
- 126. K. I. Petko and L. M. Yagupolskii, J. Fluorine Chem., 108, 211 (2001).
- 127. V. G. Poludnenko, O. B. Didinskaya, and A. F. Pozharskii, *Chem. Heterocycl. Compds* (*Engl. Transl.*), **20**, 426 (1984).
- 128. G. Bissky, V. I. Staninets, A. A. Kolomeitsev, and G.-V. Roschenthaler, Synlett, 374 (2001).
- 129. G. Bissky, G.-V. Roschenthaler, E. Lork, J. Barten, M. Medebielle, V. Staninets, A. A. Kolomeitsev, *J. Fluorine Chem.*, **109**, 173 (2001).
- 130. R. G. Syvret, EP Patent, 933364 (1999); Chem. Abstr., 131, 144602 (1999).
- 131. D. Fujii, Y. Maki, and H. Kimoto, J. Fluorine Chem., 43, 131 (1989).
- 132. D. Owen, R. G. Plevey, and J. C. Tatlow, J. Fluorine Chem., 17, 179 (1981).
- 133. J. P. Collman, R. Boulatov, C. J. Sunderland, and M. Zhong, J. Fluorine Chem., 106, 189 (2000).
- 134. L. D. Shustov, L. N. Nikolenko, and T. M. Senchenkova, Zhurn. Obshch. Khim., 53, 103 (1983); Chem. Abstr., 98, 143326 (1983).
- 135. M. E. Pierce, D. J. Carini, G. F. Huhn, G. J. Wells, and J. F. Arnett, J. Org. Chem., 58, 4642 (1993).
- 136. H. Kimoto, S. Fujii, and L. A. Cohen, J. Org. Chem. 47, 2867 (1982).
- 137. H. Kimoto, S. Fujii, and L. A. Cohen, J. Org. Chem. 49, 1060 (1984).
- 138. Y. Hayakawa, H. Kimoto, L. A. Cohen, and K. L. Kirk, J. Org. Chem. 63, 9448 (1998).

62

- 139. S. Fujii, Y. Maki, H. Kimoto, and L. A. Cohen, J. Fluorine Chem. 35, 437 (1987).
- 140. V. M. Labroo, R. B. Labroo, and L. A. Cohen, Tetrahedron Lett., 31, 5705 (1990).
- 141. Q-Y. Chen and Z-M. Qiu, J. Chem. Soc. Chem. Commun., 1240 (1987).

- 142. X-T. Huang, Z. Y. Long, and Q-Y. Chen, J. Fluorine Chem. 111, 107 (2001).
- 143. (a) M. Medebielle, J. Pinson, and J.-M. Saveant, *Tetrahedron Lett.*, **31**, 1279 (1990). (b) M. Medebielle, J. Pinson, and J.-M. Saveant, *J. Am. Chem. Soc.*, **113**, 6872 (1991).
- 144. M. Medebielle, M. A. Oturan, J. Pinson, and J.-M. Saveant, J. Org. Chem., 61, 1331 (1996).
- 145. J. G. Lombardino, J. Heterocycl. Chem., 10, 697 (1973).
- 146. J. J. Baldwin, P. A. Kasinger, F. C. Novello, J. M. Sprague, and D. E. Duggan, J. Med. Chem., 18, 895 (1975).
- 147. Y. Kamitori, Heterocycles, 60, 1185 (2003).
- 148. (a) Y. Kamitori, Tetrahedron Lett., 41, 9267 (2000). (b) Y. Kamitori, J. Heterocycl. Chem., 38, 773 (2001).
- 149. Y. Kamitori, Heterocycles, 53, 107 (2000).
- Y. Kamitori, M. Hojo, R. Masuda, S. Ohara, K. Kawasaki, Y. Kawamura, and M. Tanaka, J. Heterocycl. Chem., 27, 487 (1990).
- 151. For a related thermal cyclization of benzil N,N-dialkylmonohydrazones into imidazoles see:
 (a) W. L. Collibee and J. P. Anselme, *Tetrahedron Lett.*, 26, 1595 (1985). (b) W. L. Collibee and J. P. Anselme, *Bull. Soc. Chim. Belg.*, 95, 655 (1986).
- 152. Heterocyclization reactions of *N*,*N*-dialkylhydrazones of the general type **251** [leading to imidazoles (*Scheme 44*), oxazoles (*Scheme 80*), and thiazoles (*Scheme 93*)] present rather conflicting and confusing aspects. It is our opinion that a critical reinvestigation of these transformations is necessary to clarify their mechanistic features as well as to point out the key factors for the control of the reactivity in the formation of a given heterocycle.
- 153. W. S. Huang, C. Y. Yuan, and Z. Q. Wang, J. Fluorine Chem., 74, 279 (1995).
- 154. (a) M. Kawase, S. Saito, and T. Kurihara, *Heterocycles*, **41**, 1617 (1995). (b) M. Kawase, S. Saito, and T. Kurihara, *Chem. Pharm. Bull.*, **49**, 461 (2001); *Chem. Abstr.*, **135**, 61274 (2001).
- 155. M. Kawase, J. Chem. Soc., Chem. Commun., 2001 (1994).
- 156. For general aspects of photoinduced rearrangements of five-membered heterocycles, see: (a) A. Padwa, In *Rearrangements in Ground and Excited States*; P. de Mayo Ed.; Academic Press: New York, 1980; vol III, p 501ff. (b) M. D'Auria, *Heterocycles*, 50, 1115 (1999). (c) M. D'Auria, In *Targets in Heterocyclic Systems*, O. A. Attanasi and D. Spinelli Eds; Società Chimica Italiana: Roma, 1999, vol 2, p 233 ff. (d) M. D'auria, *Adv. Heterocycl. Chem.*, 79, 41 (2001).
- J. W. Pavlik, T. Israsena Na Ayudhaya, R. C. Pandit, and S. Tantayanon, J. Heterocycl. Chem., 41, 61 (2004).

- 158. For general aspects of the chemistry of isoxazole heterocycle, see: (a) N; K. Kochetkov and S. D. Sokolov, Adv. Heterocycl.Chem., 2, 365 (1963). (b) B. J. Wakefield and D; J; Wright, Adv. Heterocycl.Chem., 25, 147 (1979). (c) S. A. Lang, Y.-i Lin, in Comprehensive Heterocyclic Chemistry I, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984; vol 6, p. 1. (d) M. Sutharchanadevi and R. Murugan, Comprehensive Heterocyclic Chemistry II, ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Pergamon, Elsevier Science, 1996; vol 3, p. 221. (e) P. Grunanger and P. Vita-finzi, in "The Chemistry of Heterocyclic Compounds" vol 49, ed. by E. C. Taylor, Wiley –Interscience: New York (1991).
- 159. N. Saito, T. Kurihara, S. Yasuda, and M. Akagi, Yakugaku Zasshi, 90, 32, (1970); Chem. Abstr., 72, 90353 (1970).
- 160. G. S. Lal, G. P. Pez, and R. G. Syvret, Chem. Rev., 96, 1737 (1996).
- 161. (a) R. E. Banks, S. N. Mohialdin-Khffaf, G. S. Lal, I. Sharif, and R. G. Syvret, J. Chem. Soc., Chem. Commun., 595 (1992). (b) M. Abdul-Ghani, R. E. Banks, M. K. Besheesh, I. Sharif, and R. G. Syvret, J. Fluorine Chem., 73, 255 (1995).
- 162. C. E. Stephens and J. A. Blake, J. Fluorine Chem., 125, 1939 (2004).
- 163. J. Gorissen and H. G. Viehe, Bull. Soc. Chim. Belges, 87, 391 (1978).
- 164. (a) B. Baasner, A. Klausner, and P. Ooms, DE Patent, 3642453 (1988); *Chem. Abstr.*, 109, 149513 (1988). (b) A. Klausner and B. Baasuer, *J. Fluorine Chem.*, 55, 215 (1991).
- 165. (a) A. Cambon, F. Jeanneaux, and C. Massyn, DE Patent, 2424691 (1974); *Chem. Abstr.*, 82, 72972 (1975). (b) C. Massyn and A. Cambon, *J. Fluorine Chem.*, 5, 67 (1975).
- 166. K. C. Joshi, V. N. Pathak, and V. Grover, *Pharmazie*, 34, 68 (1979); *Chem. Abstr.*, 91, 56888 (1979).
- 167. C. P. Felix, N. Khatimi, A. J. Laurent, J. Org. Chem., 60, 3907 (1995).
- 168. J. W. Pavlik, J. A. Lowell, and V. Ervithayasuporn, J. Heterocycl. Chem., 42, 1253 (2005).
- 169. J. B. Carr, H. G. Durham, and D. K. Hass, J. Med. Chem., 20, 934 (1977).
- 170. V. Kumar, R. Aggarwal, and S. P. Singh, J. Fluorine Chem., 127, 880 (2006).
- 171. R. D. Chambers, A. R. Edwards, A. Batsanov, and J. A. K. Howard, *J. Fluorine Chem.*, 88, 95 (1998).
- S. Sumimoto, I. Ishizuka, S. Ueda, and H. Kai, EP Patent, 220025 (1987); *Chem Abstr.* 107, 134297 (1987).
- 173. U. Garg, V. Sareen, V. Khatri, and S. Chugh, *Ind. J. Heterocycl. Chem.*, **12**, 139 (2002); *Chem. Abstr.*, **138**, 353882 (2003).

- 174. A. Colla, M. A. P. Martins, G. Clar, S. Krimmer, and P. Fisher, Synthesis, 483 (1991).
- 175. M. A. P. Martins, G. M. Siqueira, G. P. Bastos, H. G. Bonacorso, and N. Zanatta, J. Heterocycl. Chem., 33, 1619 (1996).
- 176. I. I. Gerus, M. G. Gorbunova, S. I. Vdovenko, YU. L. Yagupol'skii, and V. P. Kukhar, *Zhurn. Organ. Khim.* 26, 1877 (1990); *Chem. Abstr.*, 115, 8196 (1991).
- 177. G. D. Diana, P. Rudewicz, D. C. Pevear, T. J. Nitz, S. C. Aldous, D. J. Aldous, D. T. Robinson, T. Draper, F. J. Dutko, C. Aldi, G. Gendrom, R. C. Oglesby, D. L. Volkots, M. Reuman, T. R. Bailey, R. Czerniak, T. Block, R. Roland, and J. Oppermann, J. Med. Chem., 38, 1355 (1995).
- 178. S. Sumimoto, I. Ishizuki, H. Kai, S. Ueda, and A. Takase, EP Patent, 220947 (1987); Chem. Abstr., 107, 134298 (1987).
- 179. C. Wu, Synthetic Commun., 28, 1503 (1998).
- 180. X.-Q. Tang and C.-M. Hu, J. Fluorine Chem., 73, 133 (1995).
- 181. X.-Q. Tang and C.-M. Hu, J. Fluorine Chem., 74, 9 (1995).
- 182. G. Meazza, L. Capuzzi, and P. Piccardi, Synthesis, 331 (1989).
- 183. Y. Shen, J. Zheng, and Y. Huang, Synthesis, 970 (1985).
- 184. (a) J. Gallucci, M. Le Blanc, J. G. Riess, J. Chem. Research (S), 192 (1978). (b) E. S. Turbanova, N. P. Stepanova, V. B. Lebedev, V. A. Galishev, and A. A. Petrov, Zhurn. Organ. Khim., 19, 221 (1983); Chem. Abstr., 98, 179258 (1983). (c) B. H.Kim and S. W. Kim, Bull. Korean Chem. Soc., 15, 807 (1994); Chem. Abstr., 122, 9158 (1995).
- 185. N. Naji, M. Soufiaoui, and P. Moreau, J. Fluorine Chem., 79, 179 (1996).
- 186. W. Peng, S. Zhu, and G. Jin, Tetrahedron, 57, 5781 (2001).
- 187. P. Bravo, D. Diliddo, and G. Resnati, Heterocycles, 34, 1703 (1992).
- 188. K. Tanaka, H. Masuda, and K. Mitsuhashi, Bull. Chem. Soc. Jpn, 57, 2184 (1984).
- 189. (a) T. D. Truskanova, N. V. Vasil'ev, A. F. Gontar', A. F. Kolomiets, and G. A. Sokol'skii, *Chem. Heterocycl. Compd. (Engl.Transl.)*, xx, 815 (1989). (b) K. Tanaka, H. Masuda, and K. Mitsuhashi, *Bull. Chem. Soc. Jpn*, 58, 2061 (1985).
- 190. K. Tanaka, T. Suzuki, S. Maeno, and K. Mitsuhashi, Bull. Chem. Soc. Jpn, 60, 4480 (1987).
- 191. K. Tanaka, T. Suzuki, S. Maeno, and K. Mitsuhashi, J. Heterocycl. Chem., 23, 1535 (1986).
- 192. For general comments on ANRORC reactions (Addition of Nucleophile Ring Opening Ring Closure), see: H. C. Van der Place, Adv. Heterocycl. Chem., 74, 1 (1999).

- 193. D. Clerin and J.-P. Fleury, J. Heterocycl. Chem., 13, 825 (1976).
- 194. S. Sumimoto, I. Ishizuka, S. Ueda, A. Takase, and K. Okuno, JP Patent, 01009978 (1989); Chem. Abstr., 111, 57722 (1989).
- 195. For general aspects of the Boulton-Katritzky rearrangements, see: (a) A. J. Boulton, A. R. Katritzky, and A. M. Hamid, J. Chem. Soc. (C), 2005 (1967). (b) A. S. Afridi, A. R. Katritzky, and C. A. Ramsden, J. Chem. Soc., Perkin Trans. 1, 315 (1976). (c) M. Ruccia, N. Vivona, and D. Spinelli, Adv. Heterocycl. Chem., 29, 141 (1981). (d) G. L'abbé, J. Heterocycl. Chem., 21, 627 (1984). (e) N. Vivona, S. Buscemi, V. Frenna, and G. Cusmano, Adv. Heterocycl. Chem., 56, 49 (1993). (f) B. Cosimelli, S. Guernelli, D. Spinelli, S. buscemi, V. Frenna, and G. Macaluso, J. Org. Chem., 66, 6124 (2001).
- 196. For comments on different reactivity of isoxazoles and 1,2,4-oxadiazoles vs the Boulton-Katritzky rearrangement, see, also: V. Frenna, N. Vivona, G. Macaluso, D. Spinelli, and G. Consiglio, J. Chem. Soc., Perkin Trans. 2, 537 (1987). (b) V. Frenna, S. Buscemi, and C. Arnone, J. Chem. Soc., Perkin Trans. 2, 1683 (1988). For an example of rearrangements of 3-acetonyl-1,2,4-oxadiazoles into 3-acylamino-isoxazoles, see: B. Kubel, Monatsh. Chem., 114, 373 (1983).
- 197. For general aspects of the chemistry of isothiazole heterocycle, see: (a) R. Slack and K. R. H. Wooldridge, Adv. Heterocycl. Chem., 4, 107 (1965). (b) R. H. Wooldridge, Adv. Heterocycl. Chem., 14, 1 (1972). (c) S. D. Sokolov, Russ. Chem. Rev. (Engl. Trans.), 48, 289 (1979). d) D. L. Pain, B. J. Peart, and K. R. H. Wooldridge, in Comprehensive Heterocyclic Chemistry, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, vol 6, p 131 (1984). (e) R. F. Chapman and B. J. Peart, in Comprehensive Heterocyclic Chemistry II, ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Elsevier, vol.3, p 319 (1996).
- 198. J. Goerdeler and M. Roegler, Chem. Ber., 103, 112 (1970).
- 199. T. E. Nickson, J. Fluorine Chem., 55, 173 (1991).
- 200. A. N. Kovregin, A. Yu. Sizov, and A. F. Ermolov, *Russian Chem. Bull.*, *Intern. Ed.*, 50, 1044 (2001).
- 201. A. N. Kovregin, A. Yu. Sizov, and A. F. Ermolov, *Russian Chem. Bull., Intern. Ed.*, **51**, 1031 (2002).
- 202. W.-D Rudorf, E. Gunther, and M. Augustin, Tetrahedron, 40, 381 (1984).
- 203. M. J. Sanders and J. R. Grunwell, J. Org. Chem., 45, 3753 (1980).
- 204. L. Assmann, Y. Kitagawa, Y. D. Koichi, H. Sawada, Y. Araki, H. Sakuma, T. Kinbara, and K. Imanishi, PCT Int. Appl., WO 2000029398 (2000); *Chem. Abstr.*, **132**, 347561 (2000).
- 205. S. Tabuchi, H. Suzuki, and T. Okauchi, JP, 08245561, 1996; Chem. Abstr., 126, 31346, (1996).

- 206. I. Sagasser, O. Menke, M. Rack, G. Hamprecht, M. Puhl, R. Reinhard, M. Witschel, C. Zagar, H. Walter, and K-O. Westphalen, PCT Int. Appl., WO 2001087863 (2001); *Chem. Abstr.*, **136**, 5978 (2001).
- For general aspects of the chemistry of oxazole heterocycle, see: (a) R. Lakhan and B. Ternai, Adv. Heterocycl. Chem., 17, 99, (1974). (b) G. V. Boyd, in Comprehensive Heterocyclic Chemistry, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, vol 6, p 177 (1984). (c) F. W. Hartner, Jr, in Comprehensive Heterocyclic Chemistry II, ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Elsevier, vol 3, p 261 (1996). (d) I. J. Turchi (ed), Oxazoles, in "The Chemistry of Heterocyclic Compounds", vol 45, J. Wiley, 1986.
- R. Wingen, B. Hormung, A. Ogawa, and W. Schmidt, DE Patent, 1000164 (2000); Chem. Abstr., 133, 112490 (2000).
- 209. (a) T. Toyooka, H. P. Chokshi, R. S. Givens, R. G. Carlson, S. M. Lunte, and T. Kuwana, *Biomedical Chromatography*, 7, 208 (1993); *Chem. Abstr.*, 120, 26665 (1994). (b) T. Toyooka, H. P. Chokshi, R. G. Carlson, R. S. Givens, and S. M. Lunte, *Analyst (London)*, 118, 257 (1993); *Chem. Abstr.*, 118, 246572 (1993).
- 210. S. M. Riyadh, H. Ishii, and T. Fuchigami, Tetrahedron, 58, 9273 (2002).
- 211. B. Helmreich, K. Burger, G. Maier, R. Hecht, and O. Nuyken, DE Patent, 4100802 (1992); *Chem. Abstr.*, **117**, 234742 (1992).
- G. Maier, R. Hecht, O. Nuyken, K. Burger, and B. Helmreich, *Macromolecules*, 26, 2583 (1993).
- 213. (a) K. Burger and D. Huebl, Chem. Zeit, 110, 89 (1986); Chem. Abstr., 106, 67201, (1987).
 (b) K. Burger and H. Goth, J. Fluorine Chem., 17, 585 (1981).
- 214. K. Burger and B. Helmreich, Chem. Zeit., 115, 253 (1991); Chem. Abstr., 115, 279878 (1991).
- 215. V. M. Koshelev, I. N. Barsukov, N. V. Vasil'ev, and A. F. Gontar, Chem. Heterocycl. Compd. (Engl. Transl.), 25, 1418, 1989; Chem. Abstr., 113, 78215 (1990).
- 216. (a) V. M. Koshelev, T. D. Truskanova, N. V. Vasilev, and A. F. Gontar, SU Patent, 1745723 (1992); *Chem. Abstr.*, 119, 225938 (1993). (b) V. M. Koshelev, T. D. Truskanova, V. F. Cherstkov, D. V. Romanov, and N. V. Vasili'ev, *Russian Chem. Bull., Int. Ed.*, 54, 1675 (2005).
- For representative examples of nucleophylic displacement on fluoro-oxazoles, see: (a) K. Burger, D. Hubl, and K. Geith, *Synthesis*, 194 (1988). (b) K. Burger, E. Hob, and K. Geith, *Synthesis*, 360 (1990). (c) K. Burger, K. Geith, and E. Hob, *Synthesis*, 352 (1990).
- See, for example: (a) K. Burger, K. Geith, and K. Gaa, Angew. Chem. Int. Ed. Engl., 27, 848 (1988). (b) K. Burger, C. Schierlinger, K. Gaa, K. Geith, N. Sewald, G. Mueller, Chem. Zeit., 113, 277 (1989); Chem. Abstr. 112, 216661 (1990). (c) K. Burger, K. Geith, and K.

Gaa, EP Patent, 336305 (1989); *Chem. Abstr.* **112**, 199122 (1990). (d) K. Burger, K. Gaa, and K. Geith, *J. Fluorine Chem.*, **41**, 429 (1988). (e) K. Burger, K. Gaa, K. Geith, and C. Schierlinger, *Synthesis*, 850 (**1989**).

- 219. W. Y. Huang and R. Q. Li, Chin. J. Chem., 12, 477 (1994); Chem. Abstr., 122, 56464 (1995).
- N. Kamikata, M. Yoshida, H. Sawada, and M. Nakayama, JP Patent, 01230564 (1989); Chem. Abstr., 112, 158240 (1990).
- 221. See, for example: (a) S. Fujii, H. Kimoto, T. Okano, H. Maramatsu, and T. Ueda, *Nagoya Kogyo Gijutsu Shikensho Hokoku*, 35, 108 (1986): *Chem. Abstr.*, 106, 176831 (1987). (b) H. Dworschak and F. Weygand, *Chem. Ber.*, 101, 302 (1968). (c) W. Steglich, H.-U. Heininger, H. Dworschak, and F. Weygand, *Angew. Chem. Int. Ed. Eng.*, 6, 807 (1967).
- 222. Y. Wang and S. Zhu, J. Fluorine Chem., 103, 139 (2000).
- 223. (a) G. Shi and Y. Xu, J. Chem. Soc. Chem. Commun., 607 (1989). (b) G. Shi, Y. Xu, and M. Xu, J. Fluorine Chem., 52, 149 (1991).
- 224. H. Yamamoto, J. Ishida, D. Tanabe, S. Satoh, Y. Sawada, T. Ohkawa, K. Imamura, and K. Nakamura, PCT Int. Appl., WO 2004065374 (2004); *Chem. Abstr.*, **141**, 174163 (2004).
- 225. To explain this cycloaddition one may assume that the 5-aminooxazole participates as a 1,3-dipole through its C(2) and C(4) ring atoms. For representative examples on this topic, see: (a) V. Kameswaran, US Patent, 5631379 (1997); *Chem. Abstr.*, **127**, 50630 (1997). (b) V. Kameswaran, US Patent, 5945538 (1999); *Chem. Abstr.*, **131**, 170344 (1999). (c) V. Kameswaran, US Patent, 5925773 (1999); *Chem. Abstr.*, **131**, 102191 (1999). (d) V. Kameswaran, US Patent, 5446170 (1995); *Chem. Abstr.*, **124**, 8608 (1995).
- 226. (a) V. Kameswaran, Eur. Patent, 662475 (1995); *Chem. Abstr.*, **123**, 169609 (1995). (b) V. Kameswaran, US Patent, 5426225 (1995); *Chem. Abstr.*, **123**, 198782 (1995).
- 227. See, for example, P. W. Knapp, US Patent, 5453508 (1995); Chem. Abstr., 124, 8800, (1995).
- 228. a) M. Kawase, H. Miyamae, M. Narita, and T. Kurihara, *Tetrahedron Lett.*, 34, 859 (1993).
 b) M. Kawase, H. Miyamae, and T. Kurihara, *Chem. Pharm. Bull.*, 46, 749 (1998).
- 229. For general aspects of the Dakin-West rection, see: a) N. L. Allinger, G. L. Wang, and B. B. Dewhurst, *J. Org. Chem.*, 39, 1730 (1974). b) G. L. Buchanan, *Chem. Soc. Rev.*, 17, 91 (1988). In general, when an α-amino acid is treated with an anhydride and pyridine, the carboxylic group is replaced by an acyl group through an oxazolone intermediate.
- 230. M. Kawase, Heterocycles, 36, 2441 (1993).
- 231. T. T. Curran, J. Fluorine Chem., 74, 107 (1995).
- 232. M. F. Brana, J. M. Castellano, P. de Miguel, P. Posada, C. R. Sanz, and A. S. Migallon, *Tetrahedron*, **50**, 10061 (1994).
- 233. Y. Martin-Cantalejo, B. Saez, J. Soto, M. J. Villa, and M. F. Brana, Synthesis, 2211 (2003).

- Y. Kamitori, M. Hojo, R. Masuda, T. Takahashi, and M. Wada, *Heterocycles*, 34, 1047 (1993).
- 235. Y. Kamitori, M. Hojo, R. Masuda, M. Wada, and T. Takahashi, Heterocycles, 37, 153 (1994).
- 236. J. V. Pavlik, H. St. Martin, K. A. Lambert, J. A. Lowell, V. M. Tsefrikas, C. K. Eddins, and N. Kebede, J. Heterocycl. Chem., 42, 273 (2005).
- 237. For general aspect of the chemistry of thiazole heterocycle, see: (a) J. V. Metzger (ed), Thiazole and its Derivatives, in "The Chemistry of Heterocyclic Compounds" (a series of Monographs), vol 34 (in three parts), J. Wiley, 1979. (b) J. V. Metzger, in *Comprehensive Heterocyclic Chemistry*, ed. by A. R. Katritzky and C. W. Rees, Pergamon, Oxford, vol 6, p 235 (1984). (c) A. Dondoni and P. Marino, in *Comprehensive Heterocyclic Chemistry II*, ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Elsevier, vol.3, p 373 (1996).
- 238. C. J. Love, G. R. E. Van Lommen, J. G. P.-O. Doyon, J.-P. A. M. Bongartz, M. J. M. Van der Aa, R. J. M. Hendrckx, P. J. J. A. Buijnsters, L. P. Cooymans, N. Vandermaesen, E. Coesemans, and G. F. Boeckx, PCT Int. Appl., WO 2003015773 (2003); *Chem. Abstr.*, 138, 205048 (2003).
- 239. M. Fyfe, PCT Int. Appl., WO 2005103021 (2005); Chem. Abstr., 143, 440398 (2005).
- 240. (a) G. Lowe and B. V. L. Potter, J. Chem. Soc. Perkin Trans. 1, 2026 (1980). (b) S. Archer and C. Perianayagan, J. Med. Chem., 22, 306 (1979).
- 241. A. Barton, S. P. Breukelman, P. T. Kaye, G. D. Meakins, and D. J. Morgan, J. Chem. Soc. Perkin Trans. 1, 159 (1982).
- 242. (a) S.M. Riyadh and T. Fuchigami, J. Org. Chem., 67, 9379 (2002). (b) S.M. Riyadh and T. Fuchigami, *Heterocycles*, 60, 15 (2003).
- 243. F. E. Herkes and T. A. Blazer, J. Heterocycl. Chem., 13, 1297 (1976).
- 244 L. F. Lee, F. M. Schleppnik, and R. K. Howe, J. Heterocycl. Chem., 22, 1621 (1985).
- 245. G. Bartoli, A. Latrofa, F. Naso, and P. E. Todesco, J. Chem. Soc. Perkin Trans. 1, 2671 (1972).
- 246. (a) G. Beck and R. Schubart, DE, 3505900 (1986); *Chem. Abstr.*, 106, 119874 (1987). (b)
 H. Foerster, G. Beck, E. Klauke, H. J. Santel, R. R. Schmidt, DE, 3505902 (1986); *Chem. Abstr.*, 105, 226542 (1986).
- 247. G. Maier and R. Hecht, Macromolecules, 28, 7558 (1995).
- 248. M. S. South and K. A. Van Sant, J. Heterocycl. Chem., 28, 1017 (1991).
- 249. L. M. Yagupol'skii and A. G.Galushko, Zhur. Obsh. Khim., 39, 2087 (1969); Chem. Abstr., 72, 31676 (1970).

- 250. T. E. Nickson, J. Fluorine Chem., 55, 173, (1991).
- 251. M. Moazzam and J. Parrick, Indian J. Chem., 27B, 1051 (1988).
- 252. (a) E. B. Towne and H. M. Hill, US Patent, 2726237 (1955); Chem. Abstr., 50, 30179 (1956). (b) J. B. Dickey, E. B. Towne, and G. F. Wright, J. Org. Chem., 20, 499 (1955).
- K. Tanaka, K. Nomura, H. Oda, S. Yoshida, and K. Mitsuhashi, J. Heterocycl. Chem., 28, 907 (1991).
- 254. (a) F. H. Agii and H. S. Gaburieru, JP Patent, 07126259 (1995); *Chem. Abstr.*, 123, 143882 (1995). (b) A. H. Hollis and G. H. Srouji, EP Patent, 650963 (1995); *Chem. Abstr.*, 123, 33061 (1995).
- 255. G. M. Dubowchik, J. A. Michne, D. Zuev, W. Schwartz, P.M. Scola, C. A. James, E. H. Ruediger, S. S. Pin, K. D. Burris, L. A. Balanda, Q. Gao, D. Wu, L. Fung, T. Fiedler, K. E. Browman, M. T. Taber, and J. Zhang, *Bior. Med. Chem. Letters*, **13**, 3997 (2003).
- 256. V. S. Korol'kova, E. Kutners, E. Gudriniece, and V. P. Barkan, *Latv. PSR Zin. Akad. Ves., Kim. Ser.*, 98 (**1989**); *Chem. Abstr.*, **111**, 214422 (1989).
- 257. R. H. Rynbrandt, E. E. Nishizawa, D. P. Balogoyen, A. R. Mendoza, and K. A. Annis, J. Med. Chem., 24, 1507 (1981).
- 258. M. Gusmeroli, A. Ciapessoni, F. Bettarini, S. Osti, L. Mirenna, G. Camaggi, A. Elmini, and R. Gironda, PCT Int. Appl., WO 2003050096 (2003); *Chem. Abstr.*, 139, 53010 (2003).
- 259. (a) F. D. Smith and R. Hunter, EP Patent, 1112688 (2001); Chem. Abstr., 135, 72729 (2001). (b) F. D. Smith, JP Patent, 172270 (2001); Chem. Abstr., 135, 61320 (2001).
- 260. F. Laduron, Z. Janousek, and H. G. Viehe, J. Fluorine Chem., 73, 83 (1995).
- 261. C.-L. Liu, M. Li, H.-W. Chi, C.-Q. Hou, and Z.-M. Li, J. Fluorine Chem., 127, 796 (2006).
- 262. For example, see: (a) R. K. Howe and L. F. Lee, DE Patent, 2919511 (1979); *Chem. Abstr.*, 92, 110998 (1980). (b) R. K. Howe and L. F. Lee, US Patent, 4437875 (1984); *Chem. Abstr.*, 101, 23466 (1984). (c) R. K. Howe and L. F. Lee, CA Patent, 1126971 (1982); *Chem. Abstr.*, 97, 182393 (1982).
- 263. Y. Kamitori, M. Hoio, R. Masuda, T. Takahashi, M. Wada, T. Hiyama, and Y. Mimura, *Heterocycles*, 38, 803 (1994).
- 264. A. B. Zolotoy, V. Ya. Popkova, M. Yu. Antipin, and Yu. T. Struchkov, Iz. Akad. Nauk, Ser. Khim., 343 (1992); Chem. Abstr., 118, 123825 (1993).

(Received August 11, 2006; in final form, November 22, 2006)